×

zbMATH — the first resource for mathematics

Regression when both response and predictor are functions. (English) Zbl 1241.62054
Summary: We consider a nonparametric regression model where the response \(\mathcal Y\) and the covariate \(\mathcal X\) are both functional (i.e., valued in some infinite-dimensional space). We define a kernel type estimator of the regression operator and we first establish its pointwise asymptotic normality. The double functional feature of the problem makes the formulas of the asymptotic bias and variance even harder to estimate than in more standard regression settings, and we propose to overcome this difficulty by using resampling ideas. Both a naive and a wild componentwise bootstrap procedure are studied, and their asymptotic validity is proved. These results are also extended to data-driven bases which is a key point for implementing this methodology. The theoretical advances are completed by some simulation studies showing both the practical feasibility of the method and the good behavior for finite sample sizes of the kernel estimator and of the bootstrap procedures to build functional pseudo-confidence area.

MSC:
62G08 Nonparametric regression and quantile regression
62G09 Nonparametric statistical resampling methods
62G20 Asymptotic properties of nonparametric inference
62G05 Nonparametric estimation
65C60 Computational problems in statistics (MSC2010)
Software:
fda (R)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Antoch, J.; Prchal, L.; De Rosa, M.; Sarda, P., Electricity consumption prediction with functional linear regression using spline estimators, J. appl. stat., 37, 12, 2027-2041, (2010)
[2] Bosq, D., Modelization, nonparametric estimation and prediction for continuous time processes, (), 509-529 · Zbl 0737.62032
[3] Bosq, D., ()
[4] Cardot, H.; Mas, A.; Sarda, P., CLT in functional linear regression models, Probab. theory related fields, 138, 325-361, (2007) · Zbl 1113.60025
[5] Chiou, J.-M.; Müller, H.-G.; Wang, J.-L., Functional response models, Statist. sinica, 14, 659-677, (2004)
[6] Crambes, C.; Kneip, A.; Sarda, P., Smoothing splines estimators for functional linear regression, Ann. statist., 37, 35-72, (2009) · Zbl 1169.62027
[7] Cuevas, A.; Febrero, M.; Fraiman, R., Linear functional regression: the case of fixed design and functional response, Canad. J. statist., 30, 285-300, (2002) · Zbl 1012.62039
[8] Dauxois, J.; Pousse, A.; Romain, Y., Asymptotic theory for the principal component analysis of a random vector function: some application to statistical inference, J. multivariate anal., 12, 136-154, (1982) · Zbl 0539.62064
[9] Delsol, L., Advances on asymptotic normality in nonparametric functional time series analysis, Statistics, 43, 13-33, (2009) · Zbl 1278.62052
[10] Fan, J.; Zhang, J.T., Functional linear models for longitudinal data, J. R. stat. soc. ser. B, 39, 254-261, (1998)
[11] Ferraty, F.; Laksaci, A.; Tadj, A.; Vieu, P., Rate of uniform consistency for nonparametric estimates with functional variables, J. statist. plann. inference, 140, 335-352, (2010) · Zbl 1177.62044
[12] Ferraty, F.; Laksaci, A.; Tadj, A.; Vieu, P., Kernel regression with functional response, Electron. J. stat., 5, 159-171, (2011) · Zbl 1274.62281
[13] Ferraty, F.; Mas, A.; Vieu, P., Nonparametric regression on functional data: inference and practical aspects, Aust. N. Z. J. stat., 49, 267-286, (2007) · Zbl 1136.62031
[14] ()
[15] Ferraty, F.; Van Keilegom, I.; Vieu, P., On the validity of the bootstrap in nonparametric functional regression, Scandinavian J. statist., 37, 286-306, (2010) · Zbl 1223.62042
[16] Ferraty, F.; Vieu, P., Nonparametric functional data analysis: theory and practice, (2006), Springer New York · Zbl 1119.62046
[17] Ferraty, F.; Vieu, P., Kernel regression estimation for functional data, () · Zbl 1049.62039
[18] Gonzalez-Manteiga, W.; Martinez-Calvo, A., Bootstrap in functional linear regression, J. statist. plann. inference, 141, 453-461, (2011) · Zbl 1197.62068
[19] Kundu, S.; Majumdar, S.; Mukherjee, K., Central limit theorems revisited, Statist. probab. lett., 47, 265-275, (2000) · Zbl 0963.60016
[20] Ledoux, M.; Talagrand, M., Probability in Banach spaces, (1991), Springer-Verlag Berlin · Zbl 0662.60008
[21] Lian, H., Convergence of functional \(k\)k-nearest neighbor regression estimate with functional responses, Electron. J. stat., 5, 31-40, (2011) · Zbl 1274.62291
[22] Masry, E., Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic process. appl., 115, 155-177, (2005) · Zbl 1101.62031
[23] Müller, H.-G.; Chiou, J.-M.; Leng, X., Inferring gene expression dynamics via functional regression analysis, BMC bioinformatics, 9, 60, (2008)
[24] Ramsay, J.; Dalzell, C., Some tools for functional data analysis (with discussion), J. R. stat. soc. ser. B, 53, 539-572, (1991) · Zbl 0800.62314
[25] Ramsay, J.; Silverman, B., Applied functional data analysis: methods and case studies, (2002), Springer New York · Zbl 1011.62002
[26] Ramsay, J.; Silverman, B., Functional data analysis, (2005), Springer New York · Zbl 1079.62006
[27] Timmermans, C.; Delsol, L.; von Sachs, R., A new semimetric and its uses for nonparametric functional data analysis, ()
[28] Yao, F., Functional principal component analysis for longitudinal and survival data, Statist. sinica, 17, 965-983, (2007) · Zbl 1133.62042
[29] Yurinskii, V.V., Exponential inequalities for sums of random vectors, J. multivariate anal., 6, 473-499, (1976) · Zbl 0346.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.