zbMATH — the first resource for mathematics

Adaptive security in broadcast encryption systems (with short ciphertexts). (English) Zbl 1239.94073
Joux, Antoine (ed.), Advances in cryptology – EUROCRYPT 2009. 28th annual international conference on the theory and applications of cryptographic techniques, Cologne, Germany, April 26–30, 2009. Proceedings. Berlin: Springer (ISBN 978-3-642-01000-2/pbk). Lecture Notes in Computer Science 5479, 171-188 (2009).
Summary: We present new techniques for achieving adaptive security in broadcast encryption systems. Previous work on fully collusion resistant broadcast encryption systems with very short ciphertexts was limited to considering only static security.
First, we present a new definition of security that we call semi-static security and show a generic “two-key” transformation from semi-statically secure systems to adaptively secure systems that have comparable-size ciphertexts. Using bilinear maps, we then construct broadcast encryption systems that are semi-statically secure in the standard model and have constant-size ciphertexts. Our semi-static constructions work when the number of indices or identifiers in the system is polynomial in the security parameter.
For identity-based broadcast encryption, where the number of potential indices or identifiers may be exponential, we present the first adaptively secure system with sublinear ciphertexts. We prove security in the standard model.
For the entire collection see [Zbl 1161.94003].

94A62 Authentication, digital signatures and secret sharing
94A60 Cryptography
Full Text: DOI
[1] Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg (2007) · Zbl 1129.94033 · doi:10.1007/978-3-540-70936-7_2
[2] Abdalla, M., Kiltz, E., Neven, G.: Generalized Key Delegation for Hierarchical Identity-Based Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 139–154. Springer, Heidelberg (2007) · Zbl 05314723 · doi:10.1007/978-3-540-74835-9_10
[3] Anonymous. Hierarchical Identity Based Encryption with Polynomially Many Levels (Manuscript, 2008)
[4] Baek, J., Safavi-Naini, R., Susilo, W.: Efficient Multi-receiver Identity-Based Encryption and Its Application to Broadcast Encryption. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 380–397. Springer, Heidelberg (2005) · Zbl 1081.94516 · doi:10.1007/978-3-540-30580-4_26
[5] Barbosa, M., Farshim, P.: Efficient Identity-Based Key Encapsulation to Multiple Parties. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 428–441. Springer, Heidelberg (2005) · Zbl 1122.94348 · doi:10.1007/11586821_28
[6] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005) · Zbl 1137.94340 · doi:10.1007/11426639_26
[7] Boneh, D., Gentry, C., Hamburg, M.: Space Efficient Identify Based Encryption without Pairings. In: FOCS 2007 (2007)
[8] Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005) · Zbl 1145.94434 · doi:10.1007/11535218_16
[9] Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006) · Zbl 1140.94326 · doi:10.1007/11761679_34
[10] Boneh, D., Waters, B.: A Fully Collusion Resistant Broadcast, Trace, and Revoke System. In: CCS 2006 (2006) · doi:10.1145/1180405.1180432
[11] Chatterjee, S., Sarkar, P.: Multi-receiver Identity-Based Key Encapsulation with Shortened Ciphertext. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 394–408. Springer, Heidelberg (2006) · Zbl 1175.94107 · doi:10.1007/11941378_28
[12] Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002) · Zbl 1055.94011 · doi:10.1007/3-540-46035-7_4
[13] Delerablée, C.: Identity-Based Broadcast Encryption with Constant Size Ciphertexts and Private Keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007) · Zbl 1153.94366 · doi:10.1007/978-3-540-76900-2_12
[14] Delerablée, C., Paillier, P., Pointcheval, D.: Fully Collusion Secure Dynamic Broadcast Encryption with Constant-Size Ciphertexts or Decryption Keys. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007) · Zbl 1151.94502 · doi:10.1007/978-3-540-73489-5_4
[15] Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003) · Zbl 1327.94041 · doi:10.1007/978-3-540-44993-5_5
[16] Dodis, Y., Fazio, N.: Public Key Trace and Revoke Scheme Secure against Adaptive Chosen Ciphertext Attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002) · Zbl 1033.94522 · doi:10.1007/3-540-36288-6_8
[17] Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994) · Zbl 0870.94026 · doi:10.1007/3-540-48329-2_40
[18] Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006) · Zbl 1140.94340 · doi:10.1007/11761679_27
[19] Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-Based Revocation in Groups of Low-State Devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 511–527. Springer, Heidelberg (2004) · Zbl 1104.94021 · doi:10.1007/978-3-540-28628-8_31
[20] Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002) · Zbl 1026.94528 · doi:10.1007/3-540-45708-9_4
[21] Katz, J., Wang, N.: Efficiency Improvements for Signature Schemes with Tight Security Reductions. In: CCS 2003 (2003) · doi:10.1145/948109.948132
[22] Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001) · Zbl 1002.94522 · doi:10.1007/3-540-44647-8_3
[23] Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001) · Zbl 0999.94522 · doi:10.1007/3-540-45472-1_1
[24] Sharmila Deva Selvi, S., Sree Vivek, S., Gopalakrishnan, R., Karuturi, N.N., Pandu Rangan, C.: Provably Secure ID-Based Broadcast Signcryption (IBBSC) Scheme. Eprint 2008/225 · Zbl 1352.94060
[25] Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985) · Zbl 1359.94626 · doi:10.1007/3-540-39568-7_5
[26] Smart, N.P.: Efficient Key Encapsulation to Multiple Parties. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg (2005) · Zbl 1116.94334 · doi:10.1007/978-3-540-30598-9_15
[27] Sakai, R., Furukawa, J.: Identity-Based Broadcast Encryption. Eprint 2007/217
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.