zbMATH — the first resource for mathematics

On Landau damping. (English) Zbl 1239.82017
Acta Math. 207, No. 1, 29-201 (2011); correction ibid. 207, No. 2, 391 (2011).
Going beyond the linearised study has been a long-standing problem in the theory of Landau damping. In the present paper, the non-linear version of Landau damping is studied for arbitrarily large times for attractive and repulsive interactions of any regularity. This leads the authors to a distinctive mathematical theory of Landau damping with its own functional spaces and inequalities.
The article provides first an introduction to Landau damping, including historical comments and a review of the existing literature. Then, the authors’ theorem on non-linear Landau damping is stated. The main ingredients of the new theory, which are the Fourier transform to quantify analytic regularity and to implement phase mixing; the introduction of a time-shift parameter to keep memory of the initial time; flexible analytic norms behaving well with respect to composition; a control of the deflection of trajectories induced by the force field; new functional inequalities of bilinear type; a new analysis of the time response aimed at controlling self-induced plasma echoes; and a Newtonian iteration scheme, are pointed out. Further, after a complete treatment of linear Landau damping, the spaces of analytic functions are defined which are needed in the following.
Next, exponential Landau damping for the linearised Vlasov equation is established in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism.
The further analysis involves new families of analytic norms having up to five parameters. After their presentation, a number of functional inequalities (i.e., gradient inequality, inversion inequality, Sobolev corrections, individual mode estimates) which are crucial in the subsequent analysis, are derived. As a first application of the new approach, linear Landau damping is revisited.
Then, four types of new estimates are established – deflection estimates (in hybrid norm), short-term and long-term regularity extortion, and echo control. This is the physically new material of the article. The short-term considerations lead to a twist on the popular view on Landau damping according to which the wave gives energy to the particles that it interacts with. Here, the wave gains regularity from the background, and regularity is converted into decay. Using the estimates a theorem of the authors about the growth control via integral inequalities is derived and proven.
Furthermore, the Newton algorithm is adapted to the setting of the non-linear Vlasov equation. Some iterative estimations (local-in-time, global-in-time) are performed during the course of the scheme. In particular, a technical refinement is presented allowing to handle Coulomb-Newton interactions. Using these estimates the main theorem of the authors on non-linear Landau damping is proven. Limiting cases are included. As a side result, the stability of homogeneous equilibria of the nonlinear Vlasov equation is established under sharp assumptions. The authors point out the strong analogy with KAM (Kolmogorov-Arnold-Mozer) theory. Further, an extension to non-analytic Gevrey distribution functions is presented. Some counterexamples and asymptotic expansions are studied. The paper is concluded with some general comments on the physical implication of Landau damping.
A short summary of the results of the study and methods of proofs can be found in the authors’ expository paper [“Landau damping”, J. Math. Phys. 51, No. 1, Paper No. 015204, 7 p. (2010; Zbl 1247.82081)].

82D10 Statistical mechanical studies of plasmas
35Q83 Vlasov equations
Full Text: DOI arXiv
[1] Akhiezer, A., Akhiezer, I., Polovin, R., Sitenko, A. & Stepanov, K., Plasma Electrodynamics. Vol. I: Linear Theory. Vol. II: Non-Linear Theory and Fluctuations. Pergamon Press, Oxford–New York, 1975.
[2] Alinhac, S. & Gérard, P., Pseudo-Differential Operators and the Nash–Moser Theorem. Graduate Studies in Mathematics, 82. Amer. Math. Soc., Providence, RI, 2007. · Zbl 1121.47033
[3] Bach, V., Fröhlich, J. & Sigal, I. M., Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Comm. Math. Phys., 207 (1999), 249–290. · Zbl 0965.81134 · doi:10.1007/s002200050726
[4] Backus, G., Linearized plasma oscillations in arbitrary electron velocity distributions. J. Math. Phys., 1 (1960), 178–191; erratum, 559. · Zbl 0106.43801 · doi:10.1063/1.1703651
[5] Balescu, R., Statistical Mechanics of Charged Particles. Monographs in Statistical Physics and Thermodynamics, 4. Wiley, London–New York–Sydney, 1963. · Zbl 0125.23106
[6] Batt, J. & Rein, G., Global classical solutions of the periodic Vlasov–Poisson system in three dimensions. C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 411–416. · Zbl 0741.35058
[7] Belmont, G., Mottez, F., Chust, T. & Hess, S., Existence of non-Landau solutions for Langmuir waves. Phys. of Plasmas, 15 (2008), 052310, 1–14. · doi:10.1063/1.2921791
[8] Benachour, S., Analyticité des solutions des équations de Vlasov–Poisson. Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (1989), 83–104. · Zbl 0702.35042
[9] Binney, J. & Tremaine, S., Galactic Dynamics. First edition. Princeton Series in Astrophysics. Princeton University Press, Princeton, 1987. · Zbl 1130.85301
[10] – Galactic Dynamics. Second edition. Princeton Series in Astrophysics. Princeton University Press, Princeton, 2008.
[11] Bouchet, F., Stochastic process of equilibrium fluctuations of a system with long-range interactions. Phys. Rev. E, 70 (2004), 036113, 1–4. · doi:10.1103/PhysRevE.70.036113
[12] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal., 3 (1993), 107–156. · Zbl 0787.35097 · doi:10.1007/BF01896020
[13] Caglioti, E. & MaffeI, C., Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys., 92 (1998), 301–323. · Zbl 0935.35116 · doi:10.1023/A:1023055905124
[14] CasE, K. M., Plasma oscillations. Ann. Physics, 7 (1959), 349–364. · Zbl 0096.44802 · doi:10.1016/0003-4916(59)90029-6
[15] Chavanis, P. H., Quasilinear theory of the 2D Euler equation. Phys. Rev. Lett., 84:24 (2000), 5512–5515. · doi:10.1103/PhysRevLett.84.5512
[16] Chavanis, P. H., Sommeria, J., & Robert, R., Statistical mechanics of two-dimensional vortices and collisionless stellar systems. Astrophys. J., 471 (1996), 385–399. · doi:10.1086/177977
[17] Chemin, J. Y., Le système de Navier–Stokes incompressible soixante dix ans après Jean Leray, in Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr., 9, pp. 99–123. Soc. Math. France, Paris, 2004. · Zbl 1075.35035
[18] Chierchia, L., A. N. Kolmogorov’s 1954 paper on nearly-integrable Hamiltonian systems. A comment on: ”On conservation of conditionally periodic motions for a small change in Hamilton’s function” [Dokl. Akad. Nauk SSSR, 98 (1954), 527–530]. Regul. Chaotic Dyn., 13 (2008), 130–139.
[19] Chust, T., Belmont, G., Mottez, F. & Hess, S., Landau and non-Landau linear damping: Physics of the dissipation. Phys. Plasmas, 16 (2009), 092104, 13 pp. · Zbl 1257.82101 · doi:10.1063/1.3205896
[20] Degond, P., Spectral theory of the linearized Vlasov–Poisson equation. Trans. Amer. Math. Soc., 294 (1986), 435–453. · Zbl 0604.35063 · doi:10.1090/S0002-9947-1986-0825714-8
[21] Dereziński, J. & Gérard, C., Scattering Theory of Classical and Quantum N-Particle Systems. Texts and Monographs in Physics. Springer, Berlin–Heidelberg, 1997. · Zbl 0899.47007
[22] Desvillettes, L. &amp; Villani, C., On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker–Planck equation. Comm. Pure Appl. Math., 54 (2001), 1–42. · Zbl 1029.82032 · doi:10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q
[23] Elskens, Y., Irreversible behaviours in Vlasov equation and many-body Hamiltonian dynamics: Landau damping, chaos and granularity, in Topics in Kinetic Theory, Fields Inst. Commun., 46, pp. 89–108. Amer. Math. Soc., Providence, RI, 2005. · Zbl 1103.82012
[24] Elskens, Y. &amp; Escande, D. F., Microscopic Dynamics of Plasmas and Chaos. Institute of Physics, Bristol, 2003. · Zbl 1009.82019
[25] Escande, D. F., Wave-particle interaction in plasmas: a qualitative approach, in Long-Range Interacting Systems, pp. 13–14, 469–506. Oxford University Press, Oxford, 2010.
[26] Fathi, A., Weak KAM Theory in Lagrangian Dynamics. Cambridge University Press, Cambridge, 2010.
[27] Filbet, F., Numerical simulations. Available online at http://math.univ-lyon1.fr/\(\sim\)filbet/publication.html . · Zbl 1297.35247
[28] Fridman, A. M. &amp; Polyachenko, V. L., Physics of Gravitating Systems. Vol. I: Equilibrium and Stability. Vol. II: Nonlinear Collective Processes. Astrophysical Applications. Springer, New York, 1984. · Zbl 0543.70010
[29] Gangbo, W. &amp; Tudorascu, A., Lagrangian dynamics on an infinite-dimensional torus; a weak KAM theorem. Adv. Math., 224 (2010), 260–292. · Zbl 1186.49031 · doi:10.1016/j.aim.2009.11.005
[30] Glassey, R. &amp; Schaeffer, J., Time decay for solutions to the linearized Vlasov equation. Transport Theory Statist. Phys., 23 (1994), 411–453. · Zbl 0819.35114 · doi:10.1080/00411459408203873
[31] – On time decay rates in Landau damping. Comm. Partial Differential Equations, 20 (1995), 647–676. · Zbl 0816.35110
[32] Gould, R., O’Neil, T. &amp; Malmberg, J., Plasma wave echo. Phys. Rev. Letters, 19:5 (1967), 219–222. · doi:10.1103/PhysRevLett.19.219
[33] Gross, L., Logarithmic Sobolev inequalities. Amer. J. Math., 97 (1975), 1061–1083. · Zbl 0318.46049 · doi:10.2307/2373688
[34] Guo, Y. &amp; Rein, G., A non-variational approach to non-linear stability in stellar dynamics applied to the King model. Comm. Math. Phys., 271 (2007), 489–509. · Zbl 1130.85002 · doi:10.1007/s00220-007-0212-8
[35] Guo, Y. &amp; Strauss, W. A., Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincar’e Anal. Non Lin’eaire, 12 (1995), 339–352. · Zbl 0836.35130
[36] ter Haar, D., Men of Physics: L. D. Landau. Selected Reading of Physics, 2. Pergamon Press, Oxford–New York, 1969.
[37] Hauray, M. &amp; Jabin, P.E., N-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal., 183 (2007), 489–524. · Zbl 1107.76066 · doi:10.1007/s00205-006-0021-9
[38] Hayes, J.N., On non-Landau damped solutions to the linearized Vlasov equation. Nuovo Cimento, 10:30 (1963), 1048–1063. · Zbl 0137.46202
[39] Heath, R., Gamba, I., Morrison, P. &amp; Michler, C., A discontinuous Galerkin method for the Vlasov–Poisson system. To appear in J. Comput. Phys. · Zbl 1244.82081
[40] Horst, E., On the asymptotic growth of the solutions of the Vlasov–Poisson system. Math. Methods Appl. Sci., 16 (1993), 75–86. · Zbl 0782.35079 · doi:10.1002/mma.1670160202
[41] Hwang, H. J. &amp; Velázquez, J. J. L., On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem. Indiana Univ. Math. J., 58:6 (2009), 2623–2660. · Zbl 1193.35229 · doi:10.1512/iumj.2009.58.3835
[42] Isichenko, M., Nonlinear Landau damping in collisionless plasma and inviscid fluid. Phys. Rev. Lett., 78:12 (1997), 2369–2372. · doi:10.1103/PhysRevLett.78.2369
[43] Jabin, P.E., Averaging lemmas and dispersion estimates for kinetic equations. Riv. Mat. Univ. Parma, 1 (2009), 71–138. · Zbl 1190.35152
[44] Kaganovich, I.D., Effects of collisions and particle trapping on collisionless heating. Phys. Rev. Lett., 82:2 (1999), 327–330. · doi:10.1103/PhysRevLett.82.327
[45] van Kampen, N. G., On the theory of stationary waves in plasmas. Physica, 21 (1955), 949–963. · doi:10.1016/S0031-8914(55)93068-8
[46] Kandrup, H., Violent relaxation, phase mixing, and gravitational Landau damping. Astrophys. J., 500 (1998), 120–128. · doi:10.1086/305721
[47] Kiessling, M. K.-H., The ”Jeans swindle”: a true story–mathematically speaking. Adv. in Appl. Math., 31 (2003), 132–149. · Zbl 1075.76030 · doi:10.1016/S0196-8858(02)00556-0
[48] – Personal communication, 2009.
[49] Krall, N. &amp; Trivelpiece, A., Principles of Plasma Physics. San Francisco Press, San Francisco, 1986.
[50] Kuksin, S. B., Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, 1556. Springer, Berlin–Heidelberg, 1993. · Zbl 0784.58028
[51] – Analysis of Hamiltonian PDEs. Oxford Lecture Series in Mathematics and its Applications, 19. Oxford University Press, Oxford, 2000.
[52] Landau, L., On the vibrations of the electronic plasma. Akad. Nauk SSSR. Zhurnal Eksper. Teoret. Fiz., 16 (1946), 574–586 (Russian); English translation in Acad. Sci. USSR. J. Phys., 10 (1946), 25–34. Reproduced in [36].(19) There is a misprint in formula (17) of this reference (p. 104): replace e ka)2/2 by e /2(ka)2.
[53] Lemou, M., Méhats, F. &amp; Raphaël, P., Orbital stability of spherical galactic models. To appear in Invent. Math. · Zbl 1232.35170
[54] Lifshitz, E. M. &amp; Pitaevskiĭ, L.P., Course of Theoretical Physics [”Landau–Lifshits”]. Vol. 10. Nauka, Moscow, 1979. English translation in Pergamon International Library of Science, Technology, Engineering and Social Studies. Pergamon Press, Oxford–New York, 1981.
[55] Lin, Z. &amp; Zeng, C., BGK waves and non-linear Landau damping. To appear in Comm. Math. Phys. · Zbl 1229.35299
[56] Lions, P. L. &amp; Perthame, B., Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math., 105 (1991), 415–430. · Zbl 0741.35061 · doi:10.1007/BF01232273
[57] Lynden-Bell, D., The stability and vibrations of a gas of stars. Mon. Not. R. Astr. Soc., 124 (1962), 279–296. · Zbl 0105.44407
[58] – Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astr. Soc., 136 (1967), 101–121.
[59] Malmberg, J. &amp; Wharton, C., Collisionless damping of electrostatic plasma waves. Phys. Rev. Lett., 13:6 (1964), 184–186. · doi:10.1103/PhysRevLett.13.184
[60] Malmberg, J., Wharton, C., Gould, R. &amp; O’Neil, T., Plasma wave echo experiment. Phys. Rev. Letters, 20:3 (1968), 95–97. · doi:10.1103/PhysRevLett.20.95
[61] Manfredi, G., Long-time behavior of non-linear Landau damping. Phys. Rev. Lett., 79:15 (1997), 2815–2818. · doi:10.1103/PhysRevLett.79.2815
[62] Marchioro, C. &amp; Pulvirenti, M., Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences, 96. Springer, New York, 1994. · Zbl 0789.76002
[63] Maslov, V. P. &amp; Fedoryuk, M.V., The linear theory of Landau damping. Mat. Sb., 127(169) (1985), 445–475, 559 (Russian); English translation in Math. USSR–Sb., 55 (1986), 437–465. · Zbl 0589.35042
[64] Medvedev, M. V., Diamond, P. H., Rosenbluth, M. N. &amp; Shevchenko, V. I., Asymptotic theory of non-linear Landau damping and particle trapping in waves of finite amplitude. Phys. Rev. Lett., 81:26 (1998), 5824–5827. · doi:10.1103/PhysRevLett.81.5824
[65] Miller, J., Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett., 65:17 (1990), 2137–2140. · Zbl 1050.82553 · doi:10.1103/PhysRevLett.65.2137
[66] Morrison, P. J., Hamiltonian description of Vlasov dynamics: action-angle variables for the continuous spectrum, in Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998), Transport Theory Statist. Phys., 29, pp. 397–414. Taylor &amp; Francis, Philadelphia, PA, 2000. · Zbl 1019.82022
[67] Moser, J., A rapidly convergent iteration method and non-linear differential equations. II. Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 499–535. · Zbl 0144.18202
[68] – Recollections, in The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., 24, pp. 19–21. Amer. Math. Soc., Providence, RI, 1999.
[69] Mouhot, C. &amp; Villani, C., Landau damping. J. Math. Phys., 51 (2010), 015204, 7. · Zbl 1247.82081 · doi:10.1063/1.3285283
[70] Nash, J., The imbedding problem for Riemannian manifolds. Ann. of Math., 63 (1956), 20–63. · Zbl 0070.38603 · doi:10.2307/1969989
[71] Nekhoroshev, N. N., An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Uspekhi Mat. Nauk, 32 (1977), 5–66, 287 (Russian); English translation in Russian Math. Surveys, 32 (1977), 1–65. · Zbl 0389.70028
[72] – An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II. Trudy Sem. Petrovsk., (1979), 5–50 (Russian); English translation in Topics in Modern Mathematics, pp. 1–58, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1985.
[73] Nirenberg, L., An abstract form of the nonlinear Cauchy–Kowalewski theorem. J. Differential Geom., 6 (1972), 561–576. · Zbl 0257.35001
[74] Nishida, T., A note on a theorem of Nirenberg. J. Differential Geom., 12 (1977), 629–633 (1978). · Zbl 0368.35007
[75] O’Neil, T. M., Collisionless damping of nonlinear plasma oscillations. Phys. Fluids, 8 (1965), 2255–2262. · doi:10.1063/1.1761193
[76] O’Neil, T. M. &amp; Coroniti, F.V., The collisionless nature of high-temperature plasmas. Rev. Modern Phys., 71:2 (1999), S404–S410. · doi:10.1103/RevModPhys.71.S404
[77] Penrose, O., Electrostatic instability of a non-Maxwellian plasma. Phys. Fluids, 3 (1960), 258–265. · Zbl 0090.22801 · doi:10.1063/1.1706024
[78] Pfaffelmoser, K., Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Differential Equations, 95 (1992), 281–303. · Zbl 0810.35089 · doi:10.1016/0022-0396(92)90033-J
[79] Rein, G., Personal communication, 2008.
[80] Robert, R., Statistical mechanics and hydrodynamical turbulence, in Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 2, pp. 1523–1531. Birkhäuser, Basel, 1995. · Zbl 0866.76038
[81] Ryutov, D. D., Landau damping: half a century with the great discovery. Plasma Phys. Control. Fusion, 41 (1999), A1–A12. · doi:10.1088/0741-3335/41/3A/001
[82] Sáenz, A. W., Long-time behavior of the electric potential and stability in the linearized Vlasov theory. J. Math. Phys., 6 (1965), 859–875. · doi:10.1063/1.1704345
[83] Saint Raymond, X., A simple Nash–Moser implicit function theorem. Enseign. Math., 35 (1989), 217–226. · Zbl 0702.58011
[84] Schaeffer, J., Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Comm. Partial Differential Equations, 16 (1991), 1313–1335. · Zbl 0746.35050 · doi:10.1080/03605309108820801
[85] Soffer, A. &amp;Weinstein, M. I., Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys., 133 (1990), 119–146. · Zbl 0721.35082 · doi:10.1007/BF02096557
[86] Spentzouris, L., Ostiguy, J. &amp; Colestock, P., Direct measurement of diffusion rates in high energy synchrotrons using longitudinal beam echoes. Phys. Rev. Lett., 76:4 (1996), 620–623. · doi:10.1103/PhysRevLett.76.620
[87] Stahl, B., Kiessling, M. K.-H. &amp; Schindler, K., Phase transitions in gravitating systems and the formation of condensed objects. Planet. Space Sci., 43 (1995), 271–282. · doi:10.1016/0032-0633(94)00188-W
[88] Stix, T. H., The Theory of Plasma Waves. McGraw-Hill, New York, 1962. · Zbl 0121.44503
[89] Tremaine, S., Hénon, M. &amp; Lynden-Bell, D., H-functions and mixing in violent relaxation. Mon. Not. R. Astr. Soc., 219 (1986), 285–297. · Zbl 0615.76086
[90] Turkington, B., Statistical equilibrium measures and coherent states in two-dimensional turbulence. Comm. Pure Appl. Math., 52 (1999), 781–809. · Zbl 0990.76029 · doi:10.1002/(SICI)1097-0312(199907)52:7<781::AID-CPA1>3.0.CO;2-C
[91] Vekstein, G. E., Landau resonance mechanism for plasma and wind-generated water waves. Amer. J. Phys., 66:10 (1998), 886–892. · doi:10.1119/1.18978
[92] Villani, C., A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, Vol. I, pp. 71–305. North-Holland, Amsterdam, 2002. · Zbl 1170.82369
[93] – Hypocoercivity. Mem. Amer. Math. Soc., 202 (2009), iv+141.
[94] Wiechen, H., Ziegler, H. J. &amp; Schindler, K., Relaxation of collisionless self-gravitating matter – the lowest energy state. Mon. Not. R. Astr. Soc., 232 (1988), 623–646. · Zbl 0667.70018
[95] Zhou, T., Guo, Y. &amp; Shu, C.-W., Numerical study on Landau damping. Phys. D, 157 (2001), 322–333. · Zbl 0972.82083 · doi:10.1016/S0167-2789(01)00289-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.