×

Statistical analysis of single-server loss queueing systems. (English) Zbl 1239.62098

Summary: Statistical bounds for certain output characteristics of \(M/GI/1/n\) and \(GI/M/1/n\) loss queueing systems are derived on the basis of large samples of an input characteristic of these systems, such as service time in \(M/GI/1/n\) queueing systems or interarrival time in \(GI/M/1/n\) queueing systems. The analysis is based on application of Kolmogorov statistics for empirical probability distribution functions.

MSC:

62M09 Non-Markovian processes: estimation
60K25 Queueing theory (aspects of probability theory)
62G30 Order statistics; empirical distribution functions
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abramov VM (1991) Investigation of a queueing system with service depending on queue-length. Donish Inc., Dushanbe (Russian)
[2] Abramov VM (1997) On a property of a refusals stream. J Appl Probab 34:800–805 · Zbl 0891.60089 · doi:10.2307/3215106
[3] Abramov VM (2002) Asymptotic analysis of the GI/M/1/n loss system as n increases to infinity. Ann Oper Res 112:35–41 · Zbl 1013.90026 · doi:10.1023/A:1020920819656
[4] Abramov VM (2004) Asymptotic behaviour of the number of lost messages. SIAM J Appl Math 64:746–761 · Zbl 1058.60071 · doi:10.1137/S0036139902405250
[5] Abramov VM (2007) Optimal control of a large dam. J Appl Probab 44:249–258 · Zbl 1135.60055 · doi:10.1239/jap/1175267176
[6] Abramov VM (2008a) Bounds for loss probabilities in large loss queueing systems. arXiv/0804.2310
[7] Abramov VM (2008b) Continuity theorems for the M/M/1/n queueing systems. Queueing Syst 59:63–86 · Zbl 1166.60054 · doi:10.1007/s11134-008-9076-7
[8] Abramov VM (2009a) Continuity of large closed queueing networks with bottlenecks. arXiv/0903.3259
[9] Abramov VM (2009b) Queueing systems, networks and telecommunication systems: asymptotic methods for queueing systems and networks with application to telecommunications. Lambert Acad. Publ., Koeln
[10] Abramov VM (2010) Takács’ asymptotic theorem and its applications. A survey. Acta Appl Math 109:609–651 · Zbl 1192.60099 · doi:10.1007/s10440-008-9337-9
[11] Acharya SK (1999) On normal approximation for maximum likelihood estimation from single server queues. Queueing Syst 31:207–216 · Zbl 0934.90012 · doi:10.1023/A:1019158230616
[12] Basawa IV, Bhat UN, Lund R (1996) Maximum likelihood estimation for single-server queues from waiting time data. Queueing Syst 24:155–167 · Zbl 0891.60091 · doi:10.1007/BF01149084
[13] Bhat NU, Rao SS (1987) Statistical analysis of queueing systems. Queueing Syst 1:217–247 · Zbl 0668.60084 · doi:10.1007/BF01149536
[14] Daley DJ (1976) Queueing output processes. Adv Appl Probab 8:395–415 · Zbl 0349.60097 · doi:10.2307/1425911
[15] David HA, Nagaraja, HN (2003) Order statistics, 3rd edn. Wiley, New Jersey
[16] Hansen MB, Pitts SM (2006) Non-parametric inference from M/G/1 workload. Bernoulli 17:737–759 · Zbl 1125.62091 · doi:10.3150/bj/1155735934
[17] Ivchenko GI, Kashtanov VA, Kovalenko IN (1982) Queueing theory. Vysshaya Shkola (Russian)
[18] Karlin S (1966) A first course in stochastic processes. Academic, New York/London
[19] Karlin S, Novikoff A (1963) Generalized convex inequalities. Pac J Math 13:1251–1279 · Zbl 0126.28102 · doi:10.2140/pjm.1963.13.1251
[20] Kolmogoroff AN (1933) Sulla determinazione empirica di una legge di distribuzione. Giornalle dell’Instituto Italiano degli Attuari 4:83–91 · JFM 59.1166.03
[21] Mandelbaum A, Zeltyn S (1998) Estimating characteristics of queueing systems using transactional data. Queueing Syst 29:75–127 · Zbl 0914.90115 · doi:10.1023/A:1019119727465
[22] Miyazawa M (1990) Complementary generating functions for the M X /GI/1/k and GI/M Y /1/k queues and their application for the comparison for loss probabilities. J Appl Probab 27:682–692 · Zbl 0718.60107
[23] Novak A, Watson R (2009) Determining an adequate probe separation for estimating the arrival rate in an M/D/1 queue using single-packet probing. Queueing Syst 61:255–272 · Zbl 1165.90403 · doi:10.1007/s11134-009-9107-z
[24] Stoyan D (1983) Comparison methods for queues and other stochastic models. Wiley, Chichester · Zbl 0536.60085
[25] Takács (1967) Combinatorial methods in the theory of stochastic processes. Wiley, New York
[26] Tomko J (1967) One limit theorem in queueing problem as the rate of input flow increases indefinitely. Stud Sci Math Hung 2:447–454 (Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.