×

zbMATH — the first resource for mathematics

Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response. (English) Zbl 1239.39011
Summary: We perform a bifurcation analysis of a discrete predator-prey model with Holling functional response. We summarize stability conditions for the three kinds of fixed points of the map, further called \(F_{1},F_{2}\) and \(F_{3}\) and collect complete information on this in a single scheme. In the case of \(F_{2}\) we also compute the critical normal form coefficient of the flip bifurcation analytically. We further obtain new information about bifurcations of the cycles with periods 2, 3, 4, 5, 8 and 16 of the system by numerical computation of the corresponding curves of fixed points and codim-1 bifurcations, using the software package MatContM. Numerical computation of the critical normal form coefficients of the codim-2 bifurcations enables us to determine numerically the bifurcation scenario around these points as well as possible branch switching to curves of codim-1 points. Using parameter-dependent normal forms, we compute codim-1 bifurcation curves that emanate at codim-2 bifurcation points in order to compute the stability boundaries of cycles with periods 4, 5, 8 and 16.

MSC:
39A28 Bifurcation theory for difference equations
92D25 Population dynamics (general)
Software:
MATCONT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Elabbasy, E.M.; Saker, S.H., Dynamics of a class of non-autonomous systems of two non-interacting preys with common predator, J. appl. math. comput., 17, 195-215, (2005) · Zbl 1069.34071
[2] K.G. Magnusson, O.K. Palsson, Predator – prey interactions of cod and capelin in Icelandic waters, in: ICES Marine Science Symposium, vol. 193, 1991, pp. 153-170.
[3] Gao, H.; Wei, H.; Sun, W.; Zhai, X., Functions used in biological models and their influence on simulations, Indian J. mar. sci., 29, 230-237, (2000)
[4] Holling, C.S., The functional response of predator to prey density and its role in mimicry and population regulation, Mem. entomol. soc. can., 45, 1-60, (1965)
[5] Maynard Smith, J., Mathematical ideas in biology, (1968), Cambridge University Press
[6] Edelstein-Keshet, L., Mathematical models in biology, (2005), SIAM Philadelphia, PA · Zbl 1100.92001
[7] Jang, S.R.J., Allee effects in a discrete-time host – parasitoid model, J. difference equ. appl., 12, 2, 165-181, (2006) · Zbl 1088.92058
[8] Kot, M., Elements of mathematical ecology, (2001), Cambridge University Press Cambridge
[9] Liu, X.; Xiao, D., Complex dynamic behaviors of a discrete-time predator – prey system, Chaos solitons fractals, 32, 80-94, (2007) · Zbl 1130.92056
[10] Mickens, R.E., A nonstandard finite-difference scheme for the lotka – volterra system, Appl. numer. math., 45, 309-314, (2003) · Zbl 1025.65047
[11] Murakami, K., Stability and bifurcation in a discrete-time predator – prey model, J. difference equ. appl., 10, 911-925, (2007) · Zbl 1127.39020
[12] Neubert, M.G.; Kot, M., The subcritical collapse of predator populations in discrete-time predator – prey models, Math. biosci., 110, 45-66, (1992) · Zbl 0747.92024
[13] Sacker, R.J.; Von Bremen, H.F., A new approach to cycling in a 2-locus 2-allele genetic model, J. difference equ. appl., 9, 5, 441-448, (2003) · Zbl 1049.92027
[14] Summers, D.; Justian, C.; Brian, H., Chaos in periodically forced discrete-time ecosystem models, Chaos solitons fractals, 11, 2331-2342, (2000) · Zbl 0964.92044
[15] Takeuchi, Y., Global dynamical properties of lotka – volterra systems, (1996), World Scientific Singapore · Zbl 0844.34006
[16] Danca, M.; Codreanu, S.; Bako, B., Detailed analysis of a nonlinear prey – predator model, J. biol. phys., 23, 11-20, (1997)
[17] Hadeler, K.P.; Gerstmann, I., The discrete rosenzweig model, Math. biosci., 98, 49-72, (1990) · Zbl 0694.92014
[18] Rosenzweig, M., Paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science, 171, 385-387, (1971)
[19] Agiza, H.N.; Elabbasy, E.M.; EL-Metwally, H.; Elsadany, A.A., Chaotic dynamics of a discrete prey – predator model with Holling type II, Nonlinear anal. RWA, 10, 116-129, (2009) · Zbl 1154.37335
[20] Li, S.; Zhang, W., Bifurcations of a discrete prey – predator model with Holling type II functional response, Discrete contin. dyn. syst., 14, 159-176, (2010) · Zbl 1200.37043
[21] Khoshsiar Ghaziani, R.; Govaerts, W.; Sonck, C., Codimension-two bifurcations of fixed points in a class of discrete prey – predator systems, Discrete dyn. nat. soc., 2011, (2011), Article ID 862494, 27 pages · Zbl 1229.92072
[22] Govaerts, W.; Khoshsiar Ghaziani, R.; Kuznetsov, Yu.A.; Meijer, H.G.E., Numerical methods for two-parameter local bifurcation analysis of maps, SIAM J. sci. comput., 29, 6, 2644-2667, (2007) · Zbl 1155.65397
[23] W. Govaerts, Yu.A. Kuznetsov, MatCont: a Matlab software project for the numerical continuation and bifurcation study of continuous and discrete parameterized dynamical systems. www.sourceforge.net.
[24] Gopalsamy, K., Stability and oscillations in delay differential equations of population dynamics, (1992), Kluwer Academic Dordrecht, Norwell, MA · Zbl 0752.34039
[25] Lotka, A.J., Elements of mathematical biology, (1926), Dover New York
[26] V. Volterra, Opere Matematiche: Memorie e Note, vol. V, Acc. Naz. dei Lincei, Roma, Cremon, 1926.
[27] Hsu, S.B.; Hwang, T.W., Global stability for a class of predator – prey systems, SIAM J. appl. math., 55, 763-783, (1995) · Zbl 0832.34035
[28] Kuznetsov, Yu.A., Elements of applied bifurcation theory, (2004), Springer-Verlag New York · Zbl 1082.37002
[29] Murray, J.D., Mathematical biology, (1993), Springer Berlin, Heidelberg, New York · Zbl 0779.92001
[30] Allgower, E.L.; Georg, K., Numerical continuation methods: an introduction, (1990), Springer-Verlag · Zbl 0717.65030
[31] Kraft, R.L., Chaos, Cantor sets, and hyperbolicity for the logistic maps, Amer. math. monthly, 106, 400-408, (1999) · Zbl 0992.37029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.