×

zbMATH — the first resource for mathematics

Decay of the Navier-Stokes-Poisson equations. (English) Zbl 1239.35117
Summary: We establish the time decay rates of the solution to the Cauchy problem for the compressible Navier-Stokes-Poisson system via a refined pure energy method. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. The \(\dot H^{-s} (0\leqslant s <3/2)\) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. As a corollary, we also obtain the usual \(L^{p}\)-\(L^{2}\) \((1<p \leq 2)\) type of the optimal decay rates. Compared to the compressible Navier-Stokes system and the compressible irrotational Euler-Poisson system, our results imply that both the dispersion effect of the electric field and the viscous dissipation contribute to enhance the decay rate of the density. Our proof is based on a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis.

MSC:
35Q30 Navier-Stokes equations
76N15 Gas dynamics, general
35Q31 Euler equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Deckelnick, K., Decay estimates for the compressible Navier-Stokes equations in unbounded domains, Math. Z., 209, 115-130, (1992) · Zbl 0752.35048
[2] Deckelnick, K., \(L^2\)-decay for the compressible Navier-Stokes equations in unbounded domains, Comm. partial differential equations, 18, 1445-1476, (1993) · Zbl 0798.35124
[3] Duan, R.J.; Strain, R.M., Optimal time decay of the Vlasov-Poisson-Boltzmann system in \(\mathbb{R}^3\), Arch. ration. mech. anal., 199, 291-328, (2011) · Zbl 1232.35169
[4] Duan, R.J.; Ukai, S.; Yang, T.; Zhao, H.J., Optimal convergence rate for the compressible Navier-Stokes equations with potential force, Math. models methods appl. sci., 17, 737-758, (2007) · Zbl 1122.35093
[5] Duan, R.J.; Liu, H.X.; Ukai, S.; Yang, T., Optimal \(L^p\)-\(L^q\) convergence rate for the compressible Navier-Stokes equations with potential force, J. differential equations, 238, 220-233, (2007) · Zbl 1121.35096
[6] Feireisl, E.; NovotnĂ˝, A.; Petleltová, H., On the existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids, J. math. fluid mech., 3, 358-392, (2001) · Zbl 0997.35043
[7] Guo, Y., Smooth irrotational flows in the large to the Euler-Poisson system, Comm. math. phys., 195, 249-265, (1998) · Zbl 0929.35112
[8] Guo, Y.; Tice, I., Decay of viscous surface waves without surface tension in horizontally infinite domains, (2011), preprint
[9] Guo, Y.; Wang, Y.J., Decay of dissipative equations and negative Sobolev spaces, (2011), preprint
[10] Hao, C.C.; Li, H.L., Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions, J. differential equations, 246, 4791-4812, (2009) · Zbl 1173.35098
[11] Hoff, D.; Zumbrun, K., Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana univ. math. J., 44, 604-676, (1995) · Zbl 0842.35076
[12] Hoff, D.; Zumbrun, K., Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. angew. math. phys., 48, 597-614, (1997) · Zbl 0882.76074
[13] Hsiao, L.; Li, H.L., Compressible Navier-Stokes-Poisson equations, Acta math. sci., 30, 1937-1948, (2010) · Zbl 1240.35406
[14] Ju, N., Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. math. phys., 251, 365-376, (2004) · Zbl 1106.35061
[15] Kagei, Y.; Kobayashi, T., On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in \(\mathbb{R}^3\), Arch. ration. mech. anal., 165, 89-159, (2002) · Zbl 1016.35055
[16] Kagei, Y.; Kobayashi, T., Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. ration. mech. anal., 177, 231-330, (2005) · Zbl 1098.76062
[17] Kawashima, S.; Nishibata, S.; Nishikawa, M., \(L^p\) energy method for multi-dimensional viscous conservation laws and application to the stability of planar waves, J. hyperbolic differ. equ., 1, 3, 581-603, (2004) · Zbl 1067.35019
[18] Kobayashi, T., Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in \(\mathbb{R}^3\), J. differential equations, 184, 587-619, (2002) · Zbl 1069.35051
[19] Kobayashi, T.; Shibata, Y., Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \(\mathbb{R}^3\), Comm. math. phys., 200, 621-659, (1999) · Zbl 0921.35092
[20] Kobayashi, T.; Suzuki, T., Weak solutions to the Navier-Stokes-Poisson equation, Adv. math. sci. appl., 18, 141-168, (2008) · Zbl 1162.35002
[21] Lions, P.L., Mathematical topics in fluids mechanics, Oxford lecture ser. math. appl., vol. 2, (1998), Clarendon Press, Oxford University Press New York
[22] Liu, T.P.; Wang, W.K., The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions, Comm. math. phys., 196, 145-173, (1998) · Zbl 0912.35122
[23] Li, H.L.; Matsumura, A.; Zhang, G.J., Optimal decay rate of the compressible Navier-Stokes-Poisson system in \(\mathbb{R}^3\), Arch. ration. mech. anal., 196, 681-713, (2010) · Zbl 1205.35201
[24] Li, H.L.; Yang, T.; Zou, C., Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system, Acta math. sci., 29B, 1721-1736, (2009) · Zbl 1212.35014
[25] A. Matsumura, An energy method for the equations of motion of compressible viscous and heat-conductive fluids, University of Wisconsin-Madison, MRC Technical Summary Report #2194 (1981), 1-16.
[26] Matsumura, A.; Nishida, T., The initial value problems for the equations of motion of viscous and heat-conductive gases, J. math. Kyoto univ., 20, 67-104, (1980) · Zbl 0429.76040
[27] Matsumura, A.; Nishida, T., The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan acad. ser. A, 55, 337-342, (1979) · Zbl 0447.76053
[28] Matsumura, A.; Nishida, T., Initial boundary value problem for equations of motion of compressible viscous and heat conductive fluids, Comm. math. phys., 89, 445-464, (1983) · Zbl 0543.76099
[29] Nirenberg, L., On elliptic partial differential equations, Ann. sc. norm. super. Pisa, 13, 115-162, (1959) · Zbl 0088.07601
[30] Ponce, G., Global existence of small solution to a class of nonlinear evolution equations, Nonlinear anal., 9, 339-418, (1985)
[31] Stein, E.M., Singular integrals and differentiability properties of functions, (1970), Princeton University Press · Zbl 0207.13501
[32] Tan, Z.; Wang, Y.J., Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force, Nonlinear anal., 71, 11, 5866-5884, (2009) · Zbl 1172.76060
[33] Tan, Z.; Wu, G.C., Global existence for the non-isentropic compressible Navier-Stokes-Poisson system in three and higher dimensions, Nonlinear anal. real world appl., 13, 2, 650-664, (2012) · Zbl 1238.35090
[34] Wang, W.K.; Wu, Z.G., Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions, J. differential equations, 248, 1617-1636, (2010) · Zbl 1185.35177
[35] Wang, W.K.; Yang, X.F., The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even spacedimensions, J. hyperbolic differ. equ., 2, 3, 673-695, (2005) · Zbl 1083.35101
[36] Wang, Y.J., Decay of the Vlasov-Poisson-Boltzmann system, (2011), preprint
[37] Zhang, G.J.; Li, H.L.; Zhu, C.J., Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in \(\mathbb{R}^3\), J. differential equations, 250, 866-891, (2011) · Zbl 1205.35237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.