×

zbMATH — the first resource for mathematics

Conic sheaves on subanalytic sites and Laplace transform. (English) Zbl 1239.32009
Sheaf theory is not well suited for the study of analytical objects that are not local, such as tempered distributions. An approach to solve this problem is the theory of ind-sheaves developed in [M. Kashiwara and P. Schapira, Ind-sheaves. Astérisque. 271. Paris: Société Mathématique de France (2001; Zbl 0993.32009)], where also the equivalence of categories is proved between ind-\(\mathbb{R}\)-constructible sheaves on a real analytic manifold \(X\) and sheaves on the subanalytic site \(X_{sa}\). The author of the paper under review works directly in the latter category.
Let \(E\) be an \(n\)-dimensional complex vector space, and let \(E^*\) be its dual. The author constructs the conic sheaves \(\mathcal O^t_{E_{\mathbb{R}^{+}}}\) and \(\mathcal O^W_{E_{\mathbb{R}^{+}}}\) of tempered and Whitney holomorphic functions by taking the Cauchy-Riemann system with values in tempered distributions and Whitney \(\mathcal C^{\infty}\)-functions, respectively. He also gives a sheaf theoretical interpretation of the Laplace isomorphisms of [M. Kashiwara and P. Schapira, J. Am. Math. Soc. 10, No. 4, 939–972 (1997; Zbl 0888.32004)], which induce isomorphisms of the derived categories \(\mathcal{O}^{t\Lambda}_{E_{\mathbb{R}^{+}}}[n]\simeq \mathcal{O}^t_{E^*_{\mathbb{R}^{+}}}\) and \(\mathcal{O}^{W\Lambda}_{E_{\mathbb{R}^{+}}}[n]\simeq \mathcal{O}^W_{E^*_{\mathbb{R}^{+}}}\).

MSC:
32C38 Sheaves of differential operators and their modules, \(D\)-modules
32B20 Semi-analytic sets, subanalytic sets, and generalizations
PDF BibTeX XML Cite
Full Text: DOI Link EuDML arXiv
References:
[1] O. Berni, Laplace transform of temperate holomorphic functions; Compositio Mathematica, \({129}\) (2001), pp. 183-201. Zbl1003.32001 MR1863301 · Zbl 1003.32001 · doi:10.1023/A:1014530424337
[2] E. Bierstone - D. Milmann, Semianalytic and subanalytic sets; Publ. I.H.E.S., \({67}\) (1988), pp. 5-42. Zbl0674.32002 MR972342 · Zbl 0674.32002 · doi:10.1007/BF02699126 · numdam:PMIHES_1988__67__5_0 · eudml:104032
[3] J. E. Björk, Analytic \({\mathcal D}\) -modules and applications; Mathematics and its Applications, \({247}\) , Kluwer Academic Publishers Group, Dordrecht (1993). Zbl0805.32001 MR1232191 · Zbl 0805.32001
[4] M. Coste, An introduction to o-minimal geometry; Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000).
[5] M. Edmundo - L. Prelli, Sheaves on \({\mathcal T}\) -topologies, arXiv:1002.0690.
[6] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems; Publ. RIMS, Kyoto Univ., \({20}\) (1984), pp. 319-365. Zbl0566.32023 MR743382 · Zbl 0566.32023 · doi:10.2977/prims/1195181610
[7] M. Kashiwara, \(\D \) -modules and microlocal calculus; Translations of Math. Monog., \({217}\) , Iwanami Series in Modern Math., American Math. Soc., Providence (2003). MR1943036
[8] M. Kashiwara - P. Schapira, Sheaves on manifolds; Grundlehren der Math., \({292}\) , Springer-Verlag, Berlin (1990). Zbl0709.18001 MR1074006 · Zbl 0709.18001
[9] M. Kashiwara - P. Schapira, Moderate and formal cohomology associated with constructible sheaves; Mémoires Soc. Math. France, \({64}\) (1996). Zbl0881.58060 MR1421293 · Zbl 0881.58060 · numdam:MSMF_1996_2_64__1_0 · eudml:94916
[10] M. Kashiwara - P. Schapira, Integral transforms with exponential kernels and Laplace transform; Journal of the AMS, \({4}\) vol. \({10}\) (1997). Zbl0888.32004 MR1447834 · Zbl 0888.32004 · doi:10.1090/S0894-0347-97-00245-2
[11] M. Kashiwara - P. Schapira, Ind-sheaves; Astérisque, \({271}\) (2001). Zbl0993.32009 MR1827714 · Zbl 0993.32009
[12] S. Łojaciewicz, Sur la géométrie semi- et sous-analytique; Ann. Inst. Fourier, \({43}\) (1993), pp. 1575-1595. Zbl0803.32002 MR1275210 · Zbl 0803.32002 · doi:10.5802/aif.1384 · numdam:AIF_1993__43_5_1575_0 · eudml:75048
[13] S. Łojaciewicz, Sur le problème de la division; Studia Mathematica, \({8}\) (1959), pp. 87-136. Zbl0115.10203 · Zbl 0115.10203
[14] B. Malgrange, Ideals of differentiable functions; Tata Institute, Oxford University Press (1967). Zbl0177.17902 MR212575 · Zbl 0177.17902
[15] B. Malgrange, Transformation de Fourier géométrique; Séminaire Bourbaki, \({30}\) , Exp. N. \({692}\) (1987-1988). Zbl0687.35003 MR992206 · Zbl 0687.35003 · numdam:SB_1987-1988__30__133_0 · eudml:110092
[16] L. Prelli, Sheaves on subanalytic sites; Rend. Sem. Mat. Univ. Padova, Vol. \({120}\) (2008), pp. 167-216. Zbl1171.32002 MR2492657 · Zbl 1171.32002 · doi:10.4171/RSMUP/120-11 · rendiconti.math.unipd.it · eudml:108741
[17] L. Prelli, Microlocalization of subanalytic sheaves; C. R. Acad. Sci. Paris Math., \({345}\) (2007), pp. 127-132, arXiv:math.AG/0702459. Zbl1159.14034 MR2344810 · Zbl 1159.14034 · doi:10.1016/j.crma.2007.06.017
[18] G. Tamme, Introduction to étale cohomology; Universitext Springer-Verlag, Berlin (1994). Zbl0815.14012 MR1317816 · Zbl 0815.14012
[19] L. Van Der Dries, Tame topology and o-minimal structures; London Math. Society Lecture Notes Series, \({248}\) , Cambridge University Press, Cambridge (1998). Zbl0953.03045 MR1633348 · Zbl 0953.03045
[20] A. J. Wilkie, Covering definable open sets by open cells; in M. Edmundo, D. Richardson, and A. Wilkie, editors, O-minimal Structures, Proceedings of the RAAG Summer School Lisbon 2003, Lecture Notes in Real Algebraic and Analytic Geometry, Cuvillier Verlag (2005).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.