×

zbMATH — the first resource for mathematics

Modeling total expenditure on warranty claims. (English) Zbl 1238.90051
Summary: We approximate the distribution of total expenditure of a retail company over warranty claims incurred in a fixed period \([0, T]\), say the following quarter. We consider two kinds of warranty policies, namely, the non-renewing free replacement warranty policy and the non-renewing pro-rata warranty policy. Our approximation holds under modest assumptions on the distribution of the sales process of the warranted item and the nature of arrivals of warranty claims. We propose a method of using historical data to statistically estimate the parameters of the approximate distribution. Our methodology is applied to the warranty claims data from a large car manufacturer for a single car model and model year.

MSC:
90B25 Reliability, availability, maintenance, inspection in operations research
90B50 Management decision making, including multiple objectives
60F05 Central limit and other weak theorems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Amato H.N., Management Science 22 pp 1391– (1976) · doi:10.1287/mnsc.22.12.1391
[2] Bass F.M., Management Science 15 pp 215– (1969) · Zbl 1231.91323 · doi:10.1287/mnsc.15.5.215
[3] Billingsley P., Convergence of Probability Measures,, 2. ed. (1999) · Zbl 0944.60003 · doi:10.1002/9780470316962
[4] Bingham N.H., Regular Variation (1987)
[5] Blischke W.R., Warranty Cost Analysis (1994) · Zbl 0709.90682
[6] de Haan L., Journal of the London Mathematical Society 13 pp 537– (1976) · Zbl 0331.44002 · doi:10.1112/jlms/s2-13.3.537
[7] de Haan L., Annals of Probability 7 pp 1028– (1979) · Zbl 0428.60033 · doi:10.1214/aop/1176994895
[8] Durrett R., Stochastic Process and Applications 5 pp 213– (1977) · Zbl 0368.60028 · doi:10.1016/0304-4149(77)90031-X
[9] Feller W., An Introduction to Probability Theory and Its Applications, 2, 2. ed. (1971) · Zbl 0219.60003
[10] Ja S.S., Naval Research Logistics 49 pp 499– (2002) · Zbl 1013.90054 · doi:10.1002/nav.10023
[11] Jagers P., Probability Theory and Related Fields 22 pp 1– (1972)
[12] Kalbfleisch J.D., Technometrics pp 273– (1991) · Zbl 0761.62137 · doi:10.2307/1268780
[13] Kulkarni V.G., Naval Research Logistics 55 pp 339– (2008) · Zbl 1153.90501 · doi:10.1002/nav.20287
[14] Majeske K.D., Reliability Engineering & System Safety 81 pp 71– (2003) · doi:10.1016/S0951-8320(03)00073-5
[15] Øksendal B.K., Stochastic Differential Equations: An Introduction With Applications (2003)
[16] Resnick S.I., Extreme Values, Regular Variation and Point Processes (1987) · Zbl 0633.60001
[17] Resnick S.I., Heavy Tail Phenomena: Probabilistic and Statistical Modeling (2007) · Zbl 1152.62029
[18] Sahin I., Naval Research Logistics 42 pp 1233– (1995) · Zbl 0836.90083 · doi:10.1002/1520-6750(199512)42:8<1233::AID-NAV3220420808>3.0.CO;2-X
[19] Samorodnitsky G., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance (1994) · Zbl 0925.60027
[20] Whitt W., Mathematics of Operations Research 5 pp 67– (1980) · Zbl 0428.60010 · doi:10.1287/moor.5.1.67
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.