zbMATH — the first resource for mathematics

Dengue disease, basic reproduction number and control. (English) Zbl 1237.92042
Summary: Dengue is one of the major international public health concerns. Although progress is underway, developing a vaccine against the disease is challenging. Thus, the main approach to fight the disease is vector control. A model for the transmission of dengue disease is presented. It consists of eight mutually exclusive compartments representing the human and vector dynamics. It also includes a control parameter (insecticide) in order to fight the mosquito.
The model presents three possible equilibria: two disease-free equilibria (DFE) and another endemic equilibrium. It has been proved that a DFE is locally asymptotically stable, whenever a certain epidemiological threshold, known as the basic reproduction number, is less than one. We show that if we apply a minimum level of insecticide, it is possible to maintain the basic reproduction number below unity. A case study, using data of the outbreak that occurred in 2009 in Cape Verde, is presented.

92C60 Medical epidemiology
93C95 Application models in control theory
65C20 Probabilistic models, generic numerical methods in probability and statistics
Scicos; Scilab
Full Text: DOI arXiv
[1] DOI: 10.1016/j.automatica.2009.02.028 · Zbl 1197.34088 · doi:10.1016/j.automatica.2009.02.028
[2] África 21. ”Mosquito transmissor da dengue chega a Cabo Verde”. África 21, December 2010. Available athttp://www.africa21digital.com/noticia.kmf?cod=7617981&canal=404
[3] DOI: 10.1080/10236190802332308 · Zbl 1147.92032 · doi:10.1080/10236190802332308
[4] Braga I. A., Epidemiol. Serv. Saúde, Brasília 16 pp 279– (2007)
[5] Campbell S. L., Modeling and Simulation in Scilab/Scicos (2006) · Zbl 1090.65001
[6] Centers for Disease Control and Prevention (CDC), Division of Vector Borne and Infectious Diseases. ”Prevention; How to reduce your risk of dengue infection”. Available athttp://www.cdc.gov/Dengue/prevention/index.html
[7] Christophers S. R., Aedes aegypti, the Yellow fever Mosquito: Its Life History, Bionomics and Structure (1960)
[8] DOI: 10.1186/1475-925X-2-4 · doi:10.1186/1475-925X-2-4
[9] DOI: 10.1016/S0025-5564(02)00108-6 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[10] DOI: 10.3934/mbe.2010.7.313 · Zbl 1259.92071 · doi:10.3934/mbe.2010.7.313
[11] DOI: 10.1016/j.mbs.2008.02.008 · Zbl 1135.92028 · doi:10.1016/j.mbs.2008.02.008
[12] DOI: 10.1098/rsif.2005.0042 · doi:10.1098/rsif.2005.0042
[13] DOI: 10.1137/S0036144500371907 · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[14] DOI: 10.1023/A:1010717502442 · doi:10.1023/A:1010717502442
[15] Ministério da Saúde do Brasil,Diretrizes nacionais para prevenção e controle de epidemias de dengue, Série A, Normas e Manuais Técnicos, Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica. – Brasília, 2009
[16] Natal D., Biológico, São Paulo 64 pp 205– (2002)
[17] Nishiura H., Dengue Bull. 30 pp 51– (2006)
[18] DOI: 10.1007/s11538-008-9300-y · Zbl 1142.92028 · doi:10.1007/s11538-008-9300-y
[19] DOI: 10.1016/j.mcm.2010.06.034 · Zbl 1205.49051 · doi:10.1016/j.mcm.2010.06.034
[20] Rodrigues H. S., Numerical Analysis and Applied Mathematics pp 979– (2010)
[21] DOI: 10.1016/S1473-3099(09)70104-5 · doi:10.1016/S1473-3099(09)70104-5
[22] DOI: 10.1142/S0129183100001036 · Zbl 0985.65084 · doi:10.1142/S0129183100001036
[23] DOI: 10.1016/S0097-8485(00)00101-7 · Zbl 1064.65069 · doi:10.1016/S0097-8485(00)00101-7
[24] SOL (Portuguese Newspaper). ”Mosquito ameaça populações”. SOL, December 2009
[25] DOI: 10.1016/j.mbs.2009.08.009 · Zbl 1180.92058 · doi:10.1016/j.mbs.2009.08.009
[26] DOI: 10.1023/B:SUPE.0000009322.23950.53 · Zbl 1070.65066 · doi:10.1023/B:SUPE.0000009322.23950.53
[27] World Health Organization (WHO). 2009. ”Dengue: Guidelines for diagnosis, treatment, prevention and control”. Available athttp://whqlibdoc.who.int/publications/2009/9789241547871_eng.pdf
[28] WHO Wkly Epidemiol. Rec. 84 pp 469– (2009)
[29] World Health Organization (WHO). ”Dengue”. July 2010. Available athttp://www.who.int/topics/dengue/en/
[30] DOI: 10.1017/S0950268809002040 · doi:10.1017/S0950268809002040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.