zbMATH — the first resource for mathematics

An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm. (English) Zbl 1237.78006
Authors’ abstract: This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov-Poisson formulation), ours is based on a nonlinearly converged Vlasov-Ampère (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant-Friedrichs-Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicit time steps (unlike the earlier “energy-conserving” explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton-Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.

78A35 Motion of charged particles
76M28 Particle methods and lattice-gas methods
35Q83 Vlasov equations
82D10 Statistical mechanical studies of plasmas
78A25 Electromagnetic theory, general
65H10 Numerical computation of solutions to systems of equations
Full Text: DOI
[1] Birdsall, C.K.; Langdon, A.B., Plasma physics via computer simulation, (2005), McGraw-Hill New York
[2] Hockney, R.W.; Eastwood, J.W., Computer simulation using particles, (1988), Taylor & Francis Inc. Bristol, UK · Zbl 0662.76002
[3] Grigoryev, Y.N.; Vshivkov, V.A.; Fedoruk, M.P., Numerical particle-in-cell methods: theory and applications, (2002), Walter de Gruyter Inc. Boston
[4] Dawson, J.M., Plasma oscillations of a large number of electron beams, Phys. rev., 118, 2, 381-389, (1960) · Zbl 0116.22202
[5] Bowers, K.J.; Albright, B.J.; Yin, L.; Bergen, B.; Kwan, T.J.T., Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation, Phys. plasmas, 15, 5, 055703, (2008)
[6] Mason, R.J., Implicit moment particle simulation of plasmas, J. comput. phys., 41, 2, 233-244, (1981) · Zbl 0469.76121
[7] Denavit, J., Time-filtering particle simulations with ωpeδt≫1, J. comput. phys., 42, 2, 337-366, (1981) · Zbl 0467.76119
[8] Brackbill, J.U.; Forslund, D.W., An implicit method for electromagnetic plasma simulation in two dimensions, J. comput. phys., 46, 271, (1982) · Zbl 0489.76127
[9] Vu, H.X.; Brackbill, J.U., CELEST1D: an implicit, fully kinetic model for low-frequency, electromagnetic plasma simulation, Comput. phys. commun., 69, 253-276, (1992)
[10] Friedman, A.; Langdon, A.B.; Cohen, B.I., A direct method for implicit particle-in-cell simulation, Comm. plasma phys. controlled fusion, 6, 6, 225-236, (1981)
[11] Cohen, B.I.; Langdon, A.B.; Friedman, A., Implicit time integration for plasma simulation, J. comput. phys., 46, 1, 15-38, (1982) · Zbl 0495.76105
[12] Langdon, A.B.; Cohen, B.I.; Friedman, A., Direct implicit large time-step particle simulation of plasmas, J. comput. phys., 51, 1, 107-138, (1983) · Zbl 0572.76123
[13] Barnes, D.C.; Kamimura, T.; Leboeuf, J.-N.; Tajima, T., Implicit particle simulation of magnetized plasmas, J. comput. phys., 52, 3, 480-502, (1983) · Zbl 0529.76117
[14] Brackbill, J.U.; Forslund, D.W., Simulation of low-frequency electromagnetic phenomena in plasmas, () · Zbl 0489.76127
[15] Langdon, A.B.; Barnes, D.C., Direct implicit plasma simulation, (), 335-375
[16] Cohen, B.I., Multiple time-scale methods in particle simulations of plasma, Particle accelerators, 19, 227-236, (1986)
[17] Hewett, D.W.; Langdon, A.B., Electromagnetic direct implicit plasma simulation, J. comput. phys., 72, 1, 121-155, (1987) · Zbl 0636.76126
[18] Friedman, A., A second-order implicit particle mover with adjustable damping, J. comput. phys., 90, 2, 292-312, (1990) · Zbl 0701.76121
[19] Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T., Implicit particle simulation of electromagnetic plasma phenomena, 100, 1, 77-90, (1992) · Zbl 0758.76042
[20] G. Lapenta, J.U. Brackbill, CELEST3D: Implicit particle in cell simulation of space plasmas in three dimensions, in: 16th International Conference on the Numerical Simulation of Plasmas, Santa Barbara, CA, USA, 1998.
[21] Gibbons, M.; Hewett, D., The Darwin direct implicit particle-irvcell (DADIPIC) method for simulation of low frequency plasma phenomena, J. comput. phys., 120, 231-247, (1995) · Zbl 0841.76066
[22] Cohen, B.I.; Langdon, A.B.; Hewett, D.W.; Procassini, R.J., Performance and optimization of direct implicit particle simulation, J. comput. phys., 81, 1, 151-168, (1989) · Zbl 0664.65111
[23] Kelley, C.T., Iterative methods for linear and nonlinear equations, (1995), Society for Industrial and Applied Mathematics (SIAM) Philadelphia · Zbl 0832.65046
[24] Kim, H.J.; Chacón, L.; Lapenta, G., Fully implicit particle-in-cell algorith, Bull. am. phys. soc., 50, 8, (2005), Abstract CP1.70
[25] Chen, G.; Chacón, L.; Barnes, D.C., An energy-conserving nonlinearly converged implicit particle-in-cell (PIC) algorithm, Bull. am. phys. soc., 55, 15, (2010), Abstract TP9.34
[26] Lewis, H.R., Energy-conserving numerical approximations for Vlasov plasmas, J. comput. phys., 6, 136-141, (1970) · Zbl 0205.57801
[27] Villasenor, J.; Buneman, O., Rigorous charge conservation for local electromagnetic field solvers, Comput. phys. commun., 69, 306-316, (1992)
[28] Cohen, B.I.; Freis, R.P.; Thomas, V., Orbit-averaged implicit particle codes, J. comput. phys., 45, 3, 345-366, (1982) · Zbl 0478.65072
[29] Degond, P.; Deluzet, F.; Navoret, L.; Sun, A.-B.; Vignal, M.-H., Asymptotic-preserving particle-in-cell method for the vlasov – poisson system near quasineutrality, J. comput. phys., 229, 5630-5652, (2010) · Zbl 1346.82034
[30] Horne, R.; Freeman, M., A new code for electrostatic simulation by numerical integration of the Vlasov and Ampère equations using maccormack’s method, J. comput. phys., 171, 1, 182-200, (2001) · Zbl 0983.78021
[31] Langdon, A.B., Implicit plasma simulation, Space sci. rev., 42, 1, 67-83, (1985)
[32] Drouin, M.; Gremillet, L.; Adam, J.-C.; Héron, A., Particle-in-cell modeling of relativistic laser-plasma interaction with the adjustable-damping, direct implicit method, J. comput. phys., 229, 12, 4781-4812, (2010) · Zbl 1305.76082
[33] Langdon, A.B., Analysis of the time integration in plasma simulation, J. comput. phys., 30, 2, 202-221, (1979) · Zbl 0395.76081
[34] O. Buneman, Fast numerical procedures for computer experiments on relativistic plasmas, in: Relativistic Plasmas, 1968, pp. 205-219.
[35] Morse, R.L.; Nielson, C.W., Numerical simulation of the Weibel instability in one and two dimensions, Phys. fluids, 14, 830, (1971)
[36] Esirkepov, T.Z.H., Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor, Comput. phys. commun., 135, 2, 144-153, (2001) · Zbl 0981.78014
[37] Omelchenko, Y.; Karimabadi, H., Event-driven, hybrid particle-in-cell simulation: A new paradigm for multi-scale plasma modeling, J. comput. phys., 216, 1, 153-178, (2006) · Zbl 1126.82043
[38] Parker, S.E.; Friedman, A.; Ray, S.L.; Birdsall, C.K., Bounded multi-scale plasma simulation: application to sheath problems, J. comput. phys., 107, 388-402, (1993) · Zbl 0778.76063
[39] Birdsall, C.K.; Maron, N., Plasma self-heating and saturation due to numerical instabilities, J. comput. phys., 36, 1, 1-19, (1980) · Zbl 0425.76108
[40] Chacón, L.; Barnes, D.C.; Knoll, D.A.; Miley, G.H., An implicit energy-conservative 2D fokker – planck algorithm: ii-Jacobian-free newton – krylov solver, J. comput. phys., 157, 654-682, (2000) · Zbl 0961.76058
[41] Dembo, R.S.; Eisenstat, S.C.; Steihaug, T., Inexact Newton methods, SIAM J. numer. anal., 19, 2, 400, (1982) · Zbl 0478.65030
[42] Stix, T., Waves in plasmas, (1992), Amer Inst of Physics New York
[43] Sagdeev, R.Z.; Usikov, D.A.; Zaslavsky, G.M., Nonlinear physics: from the pendulum to turbulence and chaos, (1988), Harwood Academic Publishers New York
[44] Shay, B.D.M.A.; Drake, J.F., Equation free projective integration: A multiscal method applied to a plasma ion acoustic wave, J. comput. phys., 226, 571-585, (2007) · Zbl 1310.76132
[45] Taylor, R.; Baker, D.; Ikezi, H., Observation of collisionless electrostatic shocks, Phys. rev. lett., 24, 5, 206-209, (1970)
[46] Chacón, L.; Knoll, D.A.; Finn, J.M., Implicit, nonlinear reduced resistive MHD nonlinear solver, J. comput. phys., 178, 1, 15-36, (2002) · Zbl 1139.76328
[47] Chacón, L.; Knoll, D.A., A 2D high-β Hall MHD implicit nonlinear solver, J. comput. phys., 188, 2, 573-592, (2003) · Zbl 1127.76375
[48] Chacón, L., An optimal, parallel, fully implicit newton – krylov solver for three-dimensional visco-resistive magnetohydrodynamics, Phys. plasmas, 15, 056103, (2008)
[49] Shampine, L.F., Stiffness and nonstiff differential equation solvers. II: detecting stiffness with runge – kutta methods, ACM trans. math. softw., 3, 1, 44-53, (1977) · Zbl 0349.65043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.