×

zbMATH — the first resource for mathematics

On difference convexity of locally Lipschitz functions. (English) Zbl 1237.46007
Summary: We survey and enhance salient parts of the literature about difference convex (DC) functions with specific regard to current knowledge and applications of DC functions.

MSC:
46B99 Normed linear spaces and Banach spaces; Banach lattices
52A41 Convex functions and convex programs in convex geometry
46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s11228-008-0085-9 · Zbl 1165.26307
[2] DOI: 10.1080/01630568908816302 · Zbl 0646.49023
[3] DOI: 10.1112/plms/s3-44.3.420 · Zbl 0487.46026
[4] Borwein JM, Convex Analysis and Nonlinear Optimization. Theory and Examples, Canadian Mathematical Society, (2nd edn in 2005) (2000)
[5] DOI: 10.1006/jfan.1997.3101 · Zbl 0896.49007
[6] Borwein, JM and Sciffer, S.An explicit non-expansive function whose subdifferential is the entire dual ball, Technion Meeting on Nonlinear Analysis, AMS Proceedings in Contemporary Mathematics (2009), in press
[7] DOI: 10.4153/CMB-1997-002-1 · Zbl 0912.46005
[8] DOI: 10.1017/CBO9781139087322
[9] Borwein JM, Techniques of Variational Analysis, CMS Books 20 (2005) · Zbl 1076.49001
[10] DOI: 10.1007/s10898-007-9159-8 · Zbl 1182.90071
[11] Duda J, Atti Sem. Mat. Fis. Univ. Modena 51 pp 111– (2003)
[12] DOI: 10.1007/BF00941076 · Zbl 0568.90076
[13] Ferrer-Biosca, A. 2001.Representation of a Polynomial Function as a Difference of Convex Polynomials, with an application, Lecture Notes in Economics and Mathematics Systems, Vol. 502, 189–207. Berlin: Springer. · Zbl 0986.90037
[14] Hartman P, Pacific J. Math. 9 pp 707– (1959)
[15] Hiriart-Urruty, J-B. 1985.Generalized Differentiability, Duality and Optimization for Problems Dealing with Differences of Convex Functions, Lecture Notes in Economics and Mathematics Systems, Vol. 256, 37–70. Berlin: Springer. · Zbl 0591.90073
[16] DOI: 10.4153/CMB-1986-076-7 · Zbl 0608.90087
[17] Hiriart-Urruty, J-B. 1989.From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality, Ettore Majorana International Science Series: Physical Sciences, Vol. 43, 219–239. New York: Plenum. · Zbl 0735.90056
[18] DOI: 10.4064/ba55-3-3 · Zbl 1135.46005
[19] DOI: 10.1007/BF00138691 · Zbl 0855.90100
[20] DOI: 10.1007/s11117-007-2106-6 · Zbl 1153.46006
[21] Kopecká E, Comment. Math. Univ. Carolin. 31 pp 501– (1990)
[22] Laghdir M, Acta Math. Vietnam. 30 pp 169– (2005)
[23] DOI: 10.1017/S0004972700036984 · Zbl 0742.90071
[24] DOI: 10.2307/1969529 · Zbl 0045.08202
[25] Pavlica D, Comment. Math. Univ. Carolin. 46 pp 75– (2005)
[26] Penot J-P, J. Convex Anal. 3 pp 97– (1996)
[27] Roberts AW, Convex Functions (1973)
[28] DOI: 10.1016/0022-247X(78)90243-3 · Zbl 0403.90066
[29] DOI: 10.2307/2046671 · Zbl 0645.26011
[30] Veselý L, Dissertationes Math. (Rozprawy Mat.) 289 pp 52– (1989)
[31] Veselý L, Acta Univ. Carolin. Math. Phys. 42 pp 89– (2001)
[32] DOI: 10.1017/S0013091505000040 · Zbl 1115.47048
[33] Veselý L, J. Convex Anal. 16 pp 423– (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.