×

zbMATH — the first resource for mathematics

The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states. (English) Zbl 1237.37059
Summary: We present a rigorous study of the classical ground-states under boundary conditions of a class of one-dimensional models generalizing the discrete Frenkel-Kontorova model. The extremalization equations of the energy of these models turn out to define area preserving twist maps which exhibits periodic, quasi-periodic and chaotic orbits. For all boundary conditions, we select among all the extremum solutions of the energy of the model, those which correspond to the ground-states of the infinite system. We prove that these ground-states are either periodic (commensurate) or quasi-periodic (incommensurate) but are never chaotic. We also prove the existence of elementary discommensurations which are minimum energy configuration of the model for certain special boundary conditions. The topological structure of the whole set of ground-states is described in details. In addition to physical applications, consequences for twist map homeomorphisms are mentioned.

MSC:
37N05 Dynamical systems in classical and celestial mechanics
37J50 Action-minimizing orbits and measures (MSC2010)
37E40 Dynamical aspects of twist maps
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pynn, R.; Iizumi, M.; Axe, J.D.; Schirane, G.; Schimaoka, K.; Moudden, A.H.; Denoyer, F.; Lambert, M.; Moudden, A.H.; Denoyer, F.; Lambert, M.; Fitzgerald, W., Nature, Phys. rev., J. phys. (Paris), Sol. st. comm., 32, 933, (1979)
[2] Peierls, R.E.; Comes, R., Quantum theory of solids, (), (1955), Clarendon Oxford · Zbl 0068.23207
[3] Bloch, J.D.; Voiron, J.; Bonner, J.C.; Bray, J.W.; Jacob, I.S.; Interrante, L.V., Phys. rev. lett., 44, 294, (1980)
[4] Kontorova, T.; Frankel, Y.I.; Kontorova, T.; Frankel, Y.I.; Kontorova, T.; Frankel, Y.I., Zh. eksp. and teor. fiz., Zh. eksp. and teor. fiz., Zh. eksp. and teor. fiz., 8, 1349, (1938)
[5] Nabarro, F., Theory of crystal dislocations, (1967), Clarendon Oxford
[6] Ying, S.C., Phys. rev., B3, 4160, (1971)
[7] Von Boehm, J.; Bak, Per, Phys. rev. lett., 42, 122, (1979)
[8] Aubry, S., (), 93, 264, (1977)
[9] Henon, M.; Chirikov, B.V.; Greene, J.; Percival, I.C., Quat. appl. math., Phys. rev., J. math. phys., J. phys. A. math. nucl. gen., 7, 794-379, (1974)
[10] Arnold, V.I.; Avez, A., Ergodic problems of classical mechanics, (1968), Benjamin New York · Zbl 0167.22901
[11] Bak, Per; Pokrovsky, V.L., Phys. rev. lett., J. phys. (Paris), 42, 761, (1981)
[12] Huberman, B.A.; Fradkin, E., Chaotic phases in statistical mechanics, (1981), preprint
[13] S. Aubry, preprint, unpublished (1978) (initial version of the present paper).
[14] Aubry, S.; André, G., Annals of the israël phys. soc., 3, 133, (1980)
[15] Smale, S., Bull. of AMS, 73, 747, (1967) · Zbl 0202.55202
[16] Brown, J.R., Ergodic theory and topological dynamics, (1976), Academic Press New York · Zbl 0334.28011
[17] Moser, J., Stable and random motions in dynamical systems, (1973), Princeton Univ. Press Princeton, NJ
[18] Aubry, S., (), chap. 11
[19] Aubry, S., Lattice locking and ergodic theory, (1977), unpublished
[20] Kingman, J.F.C., Subbadditive process, Lect. notes in math. (Springer), 539, 168, (1975) · Zbl 0325.60079
[21] Riesz, F.; Nagy, B., Functional analysis, (1965), Frederik Ungar New York
[22] McMillan, W.L., Phys. rev., B14, 1496, (1976)
[23] Aubry, S., (), 24, 221, (1980)
[24] D. Ruelle, Publications Mathématiques de l’I.H.E.S. n°50, 91440-Bures-sur-Yvette (France).
[25] Marsden; McKraken, The Hopf bifurcation and its application, ()
[26] Aubry, S., (), 163
[27] Rudin, W., Real and complex analysis, (1974), McGraw-Hill
[28] Mather, J.N., Topology, 21, 457, (1982)
[29] Percival, I.C., J. phys. A, 12, L 57, (1979)
[30] Aubry, S., J. physique, 44, 147, (1983)
[31] Fradkin, E.; Hernandez, O.; Huberman, B.; Pandit, R., Nucl. phys. B, 215, 137, (1983), During the printing of this paper, a revised paper has been published by
[32] Aubry, S.; Aubry, S., J. phys., J. physique, 44, L247, (1983)
[33] Newman, R.; Percival, I., Physica, 6D, 249-259, (1983), who made in a different terminology the same conjecture
[34] Aubry, S., (), 240, See also
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.