zbMATH — the first resource for mathematics

An algebraic treatment of imprecise probabilities. (English) Zbl 1237.06006
This is a survey paper about an algebraic approach to imprecise probabilities. Here a state on an MV-algebra \(M\) is an additive function from \(M\) to the unit interval. Also, a general treatment of upper and lower probabilities is presented.

06D35 MV-algebras
60A86 Fuzzy probability
Full Text: DOI
[1] B. Anger, J. Lembcke, Infinite subadditive capacities as upper envelopes of measures, Zeitschrift für Wahrscheinlichkeitstheorie 68 (1985), 403-414. · Zbl 0553.28002
[2] A. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneaux Réticulés, Lecture Notes in Math. 608 (1977), Springer Verlag.
[3] S. Bova, F. Flaminio, The coherence of Łukasiewicz assessments is NP-complete, Internat. J. Approx. Reason. 51(3) (2010), 294-304. · Zbl 1201.68117
[4] B. de Finetti, Theory of Probability, vol. I. John Wiley and Sons, Chichester, 1974. · Zbl 0328.60002
[5] M. Fedel, K. Keimel, F. Montagna, W. Roth, Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic, submitted. · Zbl 1266.06011
[6] T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, Internat. J. Approx. Reason. 50 (2009), 138-152. · Zbl 1185.06007
[7] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998. · Zbl 0937.03030
[8] J. Y. Halpern, Reasoning about Uncertainty, MIT Press, 2003. · Zbl 1090.68105
[9] T. Kroupa, Every state on a semisimple MV algebra is integral, Fuzzy Sets and Systems 157(20) (2006), 2771-2782. · Zbl 1107.06007
[10] D. Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63. · Zbl 0597.46059
[11] D. Mundici, Averaging the truth value in Łukasiewicz logic, Studia Logica 55(1) (1995), 113-127. · Zbl 0836.03016
[12] D. Mundici, Bookmaking over infinite-valued events, Internat. J. Approx. Reason. 46 (2006), 223-240. · Zbl 1123.03011
[13] G. Panti, Invariant measures in free MV algebras, Comm. Algebra 36 (2008), 2849-2861. Available at Arxiv preprint math. LO/0508445, 2005.
[14] W. Rudin, Functional Analysis, 2nd Edition, McGraw-Hill Publ., 1991. · Zbl 0867.46001
[15] P. Walley, Statistical Reasoning with Imprecise Probabilities, Volume 42 of Monographs on Statistics and Applied Probability, Chapman and Hall, London 1991. · Zbl 0732.62004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.