×

zbMATH — the first resource for mathematics

Multi-relaxation-time lattice Boltzmann model for incompressible flow. (English) Zbl 1236.76050
Summary: In this Letter an incompressible MRT-LB model has been proposed. The equilibria in momentum space are derived from an earlier incompressible LBGK model by Guo et al. Through the Chapman-Enskog expansion the incompressible Navier-Stokes equations can be recovered without artificial compressible effects. The steady Poiseuille flow, the driven cavity flow and the double shear flow have been carried on by the incompressible MRT-LB model. The numerical simulation results agree well with the analytical solutions or the existing results. It is found that the incompressible MRT-LB model shows better numerical stability.

MSC:
76M28 Particle methods and lattice-gas methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Benzi, R.; Succi, S.; Vergassola, M., Phys. rep., 222, 145, (1992)
[2] Qian, Y.; Suci, S.; Orszag, S.A., Annu. rev. comput. phys., 3, 195, (1995)
[3] Chen, S.; Doolen, G., Annu. rev. fluid mech., 30, 329, (1998)
[4] Shan, X.; Chen, H., Phys. rev. E, 49, 2941, (1994)
[5] He, X.; Shan, X.; Doolen, G., Phys. rev. E, 57, R13, (1998)
[6] Luo, L.-S., Phys. rev. E, 62, 4982, (2000)
[7] Inamuro, T.; Konishi, N.; Ogino, F., Comput. phys. commun., 129, 32, (2000)
[8] Ladd, A.J.C., Phys. fluids, 9, 491, (1997)
[9] Martinez, D.; Chen, S.; Matthaews, W., Phys. plasmas, 1, 1850, (1994)
[10] Chen, X.-W.; Shi, B.-C., Chin. phys., 17, 1398, (2005)
[11] d’Humières, D., (), 450
[12] Lallemand, P.; Luo, L.-S., Phys. rev. E, 61, 6546, (2000)
[13] Ginzburg, I., Adv. water res., 28, 1171, (2005)
[14] Ginzburg, I., Adv. water res., 28, 1196, (2005)
[15] d’Humières, D.; Bouzidi, M.; Lallemand, P., Phys. rev. E, 63, 066702, (2001)
[16] d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.S., Philos. trans. R. soc. London A, 360, 437, (2002)
[17] McCracken, M.E.; Abaham, J., Phys. rev. E, 71, 036701, (2005)
[18] Bhatnagar, J.; Gross, E.P.; Krook, M.K., Phys. rev., 94, 511, (1954)
[19] Guo, Z.-L.; Shi, B.-C.; Wang, N.-C., J. comput. phys., 165, 288, (2000)
[20] Guo, Z.-L.; Zheng, C.-G.; Shi, B.-C., Phys. fluids, 14, 2007, (2002)
[21] Ghia, U.; Ghia, K.N.; Shin, C.T., J. comput. phys., 48, 387, (1982)
[22] Erturk, E.; Corke, T.C.; Gökçöl, C., Int. J. numer. methods fluids, 48, 747, (2005)
[23] Hou, S.; Zou, Q., J. comput. phys., 118, 329, (1995)
[24] Yu, H.; Luo, L.S.; Girimaji, S.S., Comput. fluids, 35, 957, (2006)
[25] Yu, H.; Girimaji, S.S.; Luo, L.S., J. comput. phys., 209, 599, (2005)
[26] Brown, D.L.; Minion, M.L., J. comput. phys., 12, 165, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.