Numerical methods for the generalized Zakharov system.

*(English)*Zbl 1236.76043Summary: We present two numerical methods for the approximation of the generalized Zakharov system (ZS). The first one is the time-splitting spectral (TSSP) method, which is explicit, time reversible, and time transverse invariant if the generalized ZS is, keeps the same decay rate of the wave energy as that in the generalized ZS, gives exact results for the plane-wave solution, and is of spectral-order accuracy in space and second-order accuracy in time. The second one is to use a local spectral method, the discrete singular convolution (DSC) for spatial derivatives and the fourth-order Runge–Kutta (RK4) for time integration, which is of high (the same as spectral)-order accuracy in space and can be applied to deal with general boundary conditions. In order to test accuracy and stability, we compare these two methods with other existing methods: Fourier pseudospectral method (FPS) and wavelet-Galerkin method (WG) for spatial derivatives combining with the RK4 for time integration, as well as the standard finite difference method (FD) for solving the ZS with a solitary-wave solution. Furthermore, extensive numerical tests are presented for plane waves, solitary-wave collisions in 1d, as well as a 2d problem of the generalized ZS. Numerical results show that TSSP and DSC are spectral-order accuracy in space and much more accurate than FD, and for stability, TSSP requires \(k=O(h)\), DSC–RK4 requires \(k=O(h^2)\) for fixed acoustic speed, where \(k\) is the time step and \(h\) is the spatial mesh size.

##### MSC:

76M22 | Spectral methods applied to problems in fluid mechanics |

76X05 | Ionized gas flow in electromagnetic fields; plasmic flow |

65M70 | Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs |

PDF
BibTeX
XML
Cite

\textit{W. Bao} et al., J. Comput. Phys. 190, No. 1, 201--228 (2003; Zbl 1236.76043)

Full Text:
DOI

##### References:

[1] | Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, (1972), Dover New York · Zbl 0515.33001 |

[2] | Amaratunga, K.; Williams, J., Wavelet – galerkin solutions for the one-dimensional partial differential equations, Int. J. numer. methods engrg., 37, 2703, (1994) · Zbl 0813.65106 |

[3] | G. Bao, G.W. Wei, A.H. Zhou, Analysis of regularized Whittaker-Kotel’nikov-Shannon sampling expansion, preprint |

[4] | W. Bao, Numerical methods for nonlinear Schrödinger equation under nonzero far-field conditions, preprint |

[5] | W. Bao, D. Jaksch, An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity, SIAM J. Numer. Anal. (to appear) · Zbl 1054.35088 |

[6] | Bao, W.; Jaksch, D.; Markowich, P.A., Numerical solution of the gross – pitaevskii equation for bose – einstein condensation, J. comput. phys., 187, 318-342, (2003) · Zbl 1028.82501 |

[7] | Bao, W.; Jin, S.; Markowich, P.A., On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. comput. phys., 175, 487, (2002) · Zbl 1006.65112 |

[8] | W. Bao, S. Jin, P.A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes, SIAM J. Sci. Comput. (to appear) |

[9] | W. Bao, F.F. Sun, Numerical simulation of the vector Zakharov system for multi-component plasma, preprint |

[10] | Beylkin, G., On the representation of operators in bases of compactly supported wavelets, SIAM J. numer. anal., 29, 1716, (1992) · Zbl 0766.65007 |

[11] | Bourgain, J.; Colliander, J., On wellposedness of the Zakharov system, Internat. math. res. notices, 11, 515, (1996) · Zbl 0909.35125 |

[12] | Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zhang, T.A., Spectral methods in fluid dynamics, (1988), Springer New York · Zbl 0658.76001 |

[13] | Chang, Q.; Jiang, H., A conservative difference scheme for the Zakharov equations, J. comput. phys., 113, 309, (1994) · Zbl 0807.76050 |

[14] | Chang, Q.; Guo, B.; Jiang, H., Finite difference method for generalized Zakharov equations, Math. comp., 64, 537, (1995) · Zbl 0827.65138 |

[15] | Colliander, J., Wellposedness for Zakharov systems with generalized nonlinearity, J. differential equations, 148, 351, (1998) · Zbl 0921.35162 |

[16] | Daubechies, I., Orthonormal bases of compactly supported wavelets, Commun. pure appl. math., 41, 909, (1988) · Zbl 0644.42026 |

[17] | Fornberg, B.; Driscoll, T.A., A fast spectral algorithm for nonlinear wave equations with linear dispersion, J. comput. phys., 155, 456, (1999) · Zbl 0937.65109 |

[18] | Glassey, R., Approximate solutions to the Zakharov equations via finite differences, J. comput. phys., 100, 377, (1992) · Zbl 0775.78001 |

[19] | Glassey, R., Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. comp., 58, 83, (1992) · Zbl 0746.65066 |

[20] | Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods, (1977), Society for Industrial and Applied Mathematics Philadelphia · Zbl 0412.65058 |

[21] | Gradshteyn, I.S.; Ryzhik, I.M., Table of integrals, series, and products, (1980), Academic Press New York · Zbl 0521.33001 |

[22] | Guan, S.; Lai, C.-H.; Wei, G.W., Bessel-Fourier analysis of patterns in a circular domain, Physica D, 151, 83, (2001) · Zbl 1076.35535 |

[23] | Hadouaj, H.; Malomed, B.A.; Maugin, G.A., Soliton – soliton collisions in a generalized Zakharov system, Phys. rev. A, 44, 3932, (1991) |

[24] | Hadouaj, H.; Malomed, B.A.; Maugin, G.A., Dynamics of a soliton in a generalized Zakharov system with dissipation, Phys. rev. A, 44, 3925, (1991) |

[25] | Hansen, P.J.; Nicholson, D.R., Am. J. phys., 47, 769, (1979) |

[26] | Hardin, R.H.; Tappert, F.D., Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM rev. chronicle, 15, 423, (1973) |

[27] | Newton, P.K., Wave interactions in the singular Zakharov system, J. math. phys., 32, 2, 431, (1991) · Zbl 0850.76879 |

[28] | Payne, G.L.; Nicholson, D.R.; Downie, R.M., Numerical solution of the Zakharov equations, J. comput. phys., 50, 482, (1983) · Zbl 0518.76122 |

[29] | Qian, S.; Weiss, J., Wavelets and the numerical solution of partial differential equations, J. comp. phys., 106, 1, 155, (1993) · Zbl 0771.65072 |

[30] | R.D. Richtmyer, K.W. Morton, Difference Methods for Initial-value Problems, New York, 1967 · Zbl 0155.47502 |

[31] | Sanders, B.F.; Katoposes, N.K.; Boyd, J.P., Spectral modeling of nonlinear dispersive waves, J. hydraulic engrg. ASCE, 124, 2, (1998) |

[32] | L. Schwartz, Théore des Distributions, Hermann, Paris, 1951 |

[33] | E.I. Schulman, Dokl. Akad. Nauk. SSSR 259, 579 [Sov. Phys. Dokl. 26 (1981) 691] |

[34] | Z.H. Shao, G.W. Wei, S. Zhao, DSC time-domain solution of Maxwell’s equations, J. Comput. Phys. 189 (2003) in press · Zbl 1024.78011 |

[35] | Strang, G., On the construction and comparison of differential schemes, SIAM J. numer. anal., 5, 506, (1968) · Zbl 0184.38503 |

[36] | Sulem, C.; Sulem, P.L., Regularity properties for the equations of Langmuir turbulence, C. R. acad. sci. Paris Sér. A math., 289, 173, (1979) |

[37] | F.F. Sun, Numerical studies on the Zakharov system, Master thesis, National University of Singapore, 2003 |

[38] | Taha, T.R.; Ablowitz, M.J., Analytical and numerical aspects of certain nonlinear evolution equations, II. numerical, nonlinear Schrödinger equation, J. comput. phys., 55, 203, (1984) · Zbl 0541.65082 |

[39] | Taha, T.R.; Ablowitz, M.J., Analytical and numerical aspects of certain nonlinear evolution equations, III. numerical, korteweg – de Vries equation, J. comput. phys., 55, 231, (1984) · Zbl 0541.65083 |

[40] | Wan, D.C.; Patnaik, B.S.V.; Wei, G.W., Discrete singular convolution-finite subdomain method for the solution of incompressible viscous flows, J. comput. phys., 180, 229, (2002) · Zbl 1130.76403 |

[41] | Wei, G.W., Discrete singular convolution for the fokker – planck equation, J. chem. phys., 110, 8930, (1999) |

[42] | Wei, G.W., A unified approach for solving the fokker – planck equation, J. phys. A, 33, 4935, (2000) · Zbl 0988.82047 |

[43] | Wei, G.W., Solving quantum eigenvalue problems by discrete singular convolution, J. phys. B, 33, 343, (2000) |

[44] | Wei, G.W., Vibration analysis by discrete singular convolution, J. sound vibration, 244, 535, (2001) · Zbl 1237.74095 |

[45] | Wei, G.W., Quasi-wavelets and quasi interpolating wavelets, Chem. phys. lett., 296, 215, (1998) |

[46] | Yang, S.Y.; Zhou, Y.C.; Wei, G.W., Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations, Comput. phys. commun., 143, 113, (2002) · Zbl 0993.65112 |

[47] | Zakharov, V.E., Zh. eksp. teor. fiz., 62, 1745, (1972), [Sov. Phys. JETP 35 (1972) 908] |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.