×

zbMATH — the first resource for mathematics

A fixed point approach to stability of functional equations. (English) Zbl 1236.39022
The authors prove a simple fixed point theorem for mappings (not necessarily linear) and then derive some applications of it for the Hyers-Ulam stability of functional equations in a single variable.

MSC:
39B22 Functional equations for real functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hyers, D.H., On the stability of the linear functional equation, Proc. natl. acad. sci. USA, 27, 222-224, (1941) · Zbl 0061.26403
[2] Ulam, S.M., A collection of mathematical problems, (1960), Interscience Publishers New York, Reprinted as: Problems in Modern Mathematics, John Wiley & Sons, Inc., New York, 1964 · Zbl 0086.24101
[3] Aoki, T., On the stability of the linear transformation in Banach spaces, J. math. soc. Japan, 2, 64-66, (1950) · Zbl 0040.35501
[4] Bourgin, D.G., Classes of transformations and bordering transformations, Bull. amer. math. soc., 57, 223-237, (1951) · Zbl 0043.32902
[5] Rassias, Th.M., On the stability of the linear mapping in Banach spaces, Proc. amer. math. soc., 72, 297-300, (1978) · Zbl 0398.47040
[6] Pólya, Gy.; Szegö, G., Aufgaben und lehrsätze aus der analysis, vol. I, (1925), Springer Berlin
[7] Agarwal, R.P.; Xu, B.; Zhang, W., Stability of functional equations in single variable, J. math. anal. appl., 288, 852-869, (2003) · Zbl 1053.39042
[8] Czerwik, S., Functional equations and inequalities in several variables, (2002), World Scientific London · Zbl 1011.39019
[9] Forti, G.L., Hyers – ulam stability of functional equations in several variables, Aequationes math., 50, 143-190, (1995) · Zbl 0836.39007
[10] R. Ger, A survey of recent results on stability of functional equations, in: Proc. of the 4th International Conference on Functional Equations and Inequalities, Cracow, Pedagogical University of Cracow, Poland, 1994, pp. 5-36.
[11] Gilányi, A.; Kaiser, Z.; Páles, Zs., Estimates to the stability of functional equations, Aequationes math., 73, 125-143, (2007) · Zbl 1121.39029
[12] Hyers, D.H.; Isac, G.; Rassias, Th.M., Stability of functional equations in several variables, (1998), Birkhäuser Boston, Basel, Berlin · Zbl 0894.39012
[13] Jung, S.-M., Hyers – ulam – rassias stability of functional equations in mathematical analysis, (2001), Hadronic Press Palm Harbor, FL · Zbl 0980.39024
[14] Maligranda, L., A result of tosio aoki about a generalization of hyers – ulam stability of additive functions—a question of priority, Aequationes math., 75, 289-296, (2008) · Zbl 1158.39019
[15] Moszner, Z., On the stability of functional equations, Aequationes math., 77, 33-88, (2009) · Zbl 1207.39044
[16] Cădariu, L.; Radu, V., Fixed point methods for the generalized stability of functional equations in a single variable, Fixed point theory appl., 2008, (2008), Art. ID 749392, 15 pp. · Zbl 1146.39040
[17] Jung, S.-M., A fixed point approach to the stability of isometries, J. math. anal. appl., 329, 879-890, (2007) · Zbl 1153.39309
[18] Jung, Y.-S.; Chang, I.-S., The stability of a cubic functional equation and fixed point alternative, J. math. anal. appl., 306, 752-760, (2005) · Zbl 1077.39026
[19] Jung, S.-M.; Kim, T.-S., A fixed point approach to the stability of the cubic functional equation, Bol. soc. mat. mexicana (3), 12, 51-57, (2006) · Zbl 1133.39028
[20] Mirzavaziri, M.; Moslehian, M.S., A fixed point approach to stability of a quadratic quation, Bull. braz. math. soc. (NS), 37, 3, 361-376, (2006) · Zbl 1118.39015
[21] Baker, J.A., The stability of certain functional equations, Proc. amer. math. soc., 112, 729-732, (1991) · Zbl 0735.39004
[22] Brzdȩk, J.; Jung, S.-M., A note on stability of a linear functional equation of second order connected with the Fibonacci numbers and Lucas sequences, J. inequal. appl., 2010, (2010), Article ID 793947, 10 pages. · Zbl 1198.39036
[23] Brzdȩk, J.; Popa, D.; Xu, B., The hyers – ulam stability of linear equations of higher orders, Acta math. hungar., 120, 1-8, (2008) · Zbl 1174.39012
[24] Brzdȩk, J.; Popa, D.; Xu, B., Remarks on stability of the linear recurrence of higher order, Appl. math. lett., 23, 1459-1463, (2010) · Zbl 1206.39019
[25] Brzdȩk, J.; Popa, D.; Xu, B., On nonstability of the linear recurrence of order one, J. math. anal. appl., 367, 146-153, (2010) · Zbl 1193.39006
[26] Forti, G.L., Comments on the core of the direct method for proving hyers – ulam stability of functional equations, J. math. anal. appl., 295, 127-133, (2004) · Zbl 1052.39031
[27] Popa, D., Hyers – ulam stability of the linear recurrence with constant coefficients, Adv. difference equ., 2005, 2, 101-107, (2005) · Zbl 1095.39024
[28] Sikorska, J., On a direct method for proving the hyers – ulam stability of functional equations, J. math. anal. appl., 372, 99-109, (2010) · Zbl 1198.39039
[29] Trif, T., On the stability of a general gamma-type functional equation, Publ. math. debrecen, 60, 47-61, (2002) · Zbl 1004.39023
[30] Trif, T., Hyers – ulam – rassias stability of a linear functional equation with constant coefficients, Nonlinear funct. anal. appl., 5, 881-889, (2006) · Zbl 1115.39028
[31] Kuczma, M., Functional equations in a single variable, (1968), PWN—Polish Scientific Publishers Warszawa · Zbl 0196.16403
[32] Kuczma, M.; Choczewski, B.; Ger, R., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.