×

zbMATH — the first resource for mathematics

Singular limit of a competition-diffusion system with large interspecific interaction. (English) Zbl 1236.35208
Summary: We consider a competition-diffusion system for two competing species; the density of the first species satisfies a parabolic equation together with an inhomogeneous Dirichlet boundary condition whereas the second one either satisfies a parabolic equation with a homogeneous Neumann boundary condition, or an ordinary differential equation. Under the situation where the two species spatially segregate as the interspecific competition rate becomes large, we show that the resulting limit problem turns out to be a free boundary problem. We focus on the singular limit of the interspecific reaction term, which involves a measure located on the free boundary.

MSC:
35R35 Free boundary problems for PDEs
35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aniţa, S.; Capasso, V., Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear anal. real world appl., 13, 725-735, (2012) · Zbl 1238.93081
[2] Bardos, C.; Le Roux, A.-Y.; Nédélec, J.-C., First order quasilinear equations with boundary conditions, Comm. partial differential equations, 4, 1017-1034, (1979) · Zbl 0418.35024
[3] Conti, M.; Felli, V., Global minimizers of coexistence for competing species, J. lond. math. soc. (2), 83, 606-618, (2011) · Zbl 1217.35194
[4] M Crooks, E.C.; Dancer, E.N.; Hilhorst, D.; Mimura, M.; Ninomiya, H., Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions, Nonlinear anal. real world appl., 5, 645-665, (2004) · Zbl 1079.35008
[5] Crooks, E.C.M.; Dancer, E.N.; Hilhorst, D., Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions, Discrete contin. dyn. syst. ser. B, 8, 39-44, (2007) · Zbl 1139.35049
[6] Crooks, E.C.M.; Dancer, E.N.; Hilhorst, D., On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions, Topol. methods nonlinear anal., 30, 1-36, (2007) · Zbl 1139.35049
[7] Dancer, E.N., Competing species systems with diffusion and large interactions, Rend. sem. mat. fis. milano, 65, 23-33, (1997) · Zbl 0884.35031
[8] Dancer, E.N.; Hilhorst, D.; Mimura, M.; Peletier, L.A., Spatial segregation limit of a competition-diffusion system, European J. appl. math., 10, 97-115, (1999) · Zbl 0982.92031
[9] Dancer, E.N.; Wang, K.; Zhang, Z., Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, J. differential equations, 251, 2737-2769, (2011) · Zbl 1270.35043
[10] Dancer, E.N.; Zhang, Z., Dynamics of Lotka-Volterra competition systems with large interaction, J. differential equations, 182, 470-489, (2002) · Zbl 1006.35047
[11] Durney, C.H.; Case, S.O.; Pleimling, M.; Zia, R.K.P., Saddles, arrows, and spirals: deterministic trajectories in cyclic competition of four species, Phys. rev. E, 83, 051108, (2011)
[12] Ei, S.-I.; Ikota, R.; Mimura, M., Segregating partition problem in competition-diffusion systems, Interfaces free bound., 1, 57-80, (1999) · Zbl 0980.92037
[13] Ei, S.-I.; Yanagida, E., Dynamics of interfaces in competition-diffusion systems, SIAM J. appl. math., 54, 1355-1373, (1994) · Zbl 0806.35006
[14] Eymard, R.; Hilhorst, D.; van der Hout, R.; Peletier, L.A., A reaction-diffusion system approximation of a one-phase Stefan problem, (), 156-170 · Zbl 1054.35019
[15] Evans, L.C., A convergence theorem for a chemical reaction-diffusion system, Houston J. math., 6, 259-267, (1980) · Zbl 0452.35005
[16] El Hamidi, A.; Garbey, M.; Ali, N., On nonlinear coupled diffusions in competition systems, Nonlinear anal. real world appl., 13, 1306-1318, (2012) · Zbl 1239.35066
[17] Hilhorst, D.; van der Hout, R.; Mimura, M.; Ohnishi, I., Fast reaction limits and Liesegang bands, (), 241-250 · Zbl 1119.35330
[18] Hilhorst, D.; van der Hout, R.; Mimura, M.; Ohnishi, I., A mathematical study of the one-dimensional Keller and rubinow model for Liesegang bands, J. stat. phys., 135, 107-132, (2009) · Zbl 1180.35287
[19] Hilhorst, D.; van der Hout, R.; Peletier, L.A., The fast reaction limit for a reaction-diffusion system, J. math. anal. appl., 199, 349-373, (1996) · Zbl 0865.35063
[20] Hilhorst, D.; van der Hout, R.; Peletier, L.A., Diffusion in the presence of fast reaction: the case of a general monotone reaction term, J. math. sci. univ. Tokyo, 4, 469-517, (1997) · Zbl 0905.35045
[21] Hilhorst, D.; van der Hout, R.; Peletier, L.A., Nonlinear diffusion in the presence of fast reaction, Nonlinear anal., 41, 803-823, (2000) · Zbl 0963.35103
[22] Hilhorst, D.; Iida, M.; Mimura, M.; Ninomiya, H., A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. indust. appl. math., 18, 161-180, (2001) · Zbl 0980.35178
[23] Hou, J.; Teng, Z.; Gao, S., Permanence and global stability for nonautonomous N-species Lotka-Volterra competitive system with impulses, Nonlinear anal. real world appl., 11, 1882-1896, (2010) · Zbl 1200.34051
[24] Hu, H.; Wang, K.; Wu, D., Permanence and global stability for nonautonomous N-species Lotka-Volterra competitive system with impulses and infinite delays, J. math. anal. appl., 377, 145-160, (2011) · Zbl 1223.34112
[25] Ling, Z.; Tang, Q.; Lin, Z., A free boundary problem for two-species competitive model in ecology, Nonlinear anal. real world appl., 11, 1775-1781, (2010) · Zbl 1190.35230
[26] Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems, Progr. nonlinear differential equations appl., vol. 16, (1995), Birkhäuser Verlag Basel · Zbl 0816.35001
[27] Matano, H.; Mimura, M., Pattern formation in competition-diffusion systems in nonconvex domains, Publ. res. inst. math. sci., 19, 1049-1079, (1983) · Zbl 0548.35063
[28] Mimura, M., Spatial distribution of competing species, (), 492-501
[29] Mimura, M.; Kawasaki, K., Spatial segregation in competitive interaction-diffusion equations, J. math. biol., 9, 49-64, (1980) · Zbl 0425.92010
[30] Murakawa, H.; Ninomiya, H., Fast reaction limit of a three-component reaction-diffusion system, J. math. anal. appl., 379, 150-170, (2011) · Zbl 1217.35017
[31] Namba, T.; Mimura, M., Spatial distribution of competing populations, J. theoret. biol., 87, 795-814, (1980)
[32] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J. theoret. biol., 79, 83-99, (1979)
[33] Shigesada, N.; Kawasaki, K.; Teramoto, E., The effects of interference competition on stability, structure and invasion of a multispecies system, J. math. biol., 21, 97-113, (1984) · Zbl 0568.92017
[34] Squassina, M., On the long term spatial segregation for a competition-diffusion system, Asymptot. anal., 57, 83-103, (2008) · Zbl 1144.35398
[35] Squassina, M.; Zuccher, S., Numerical computations for the spatial segregation limit of some 2D competition-diffusion systems, Adv. math. sci. appl., 18, 83-104, (2008) · Zbl 1175.35077
[36] Yu, Z.-X.; Yuan, R., Traveling waves of delayed reaction-diffusion systems with applications, Nonlinear anal. real world appl., 12, 2475-2488, (2011) · Zbl 1222.35055
[37] Wang, K.; Zhang, Z., Some new results in competing systems with many species, Ann. inst. H. poincare anal. non lineaire, 27, 739-761, (2010) · Zbl 1201.35113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.