×

zbMATH — the first resource for mathematics

Two-dimensional dark soliton in the nonlinear Schrödinger equation. (English) Zbl 1236.35140
Summary: Two-dimensional gray solitons to the nonlinear Schrödinger equation are numerically created by two processes to show its robustness. One is transverse instability of a one-dimensional gray soliton, and another is a pair annihilation of a vortex and an antivortex. The two-dimensional dark solitons are anisotropic and propagate in a certain direction. The two-dimensional dark soliton is stable against the head-on collision. The effective mass of the two-dimensional dark soliton is evaluated from the motion in a harmonic potential.

MSC:
35Q51 Soliton equations
78A60 Lasers, masers, optical bistability, nonlinear optics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kivshar, Y.S.; Agrawal, G.P., Optical solitons, (2003), Academic Press San Diego
[2] Burger, S.; Bongs, K.; Dettmer, S.; Ertmer, W.; Sengstock, K.; Sanpera, A.; Shlyapnikov, G.V.; Lewenstein, M., Phys. rev. lett., 83, 5198, (1999)
[3] Denschlag, J.; Simsarian, J.E.; Feder, D.L.; Clark, C.W.; Collins, L.A.; Cubizolles, J.; Deng, L.; Hagley, E.W.; Helmerson, K.; Reinhardt, W.P.; Rolston, S.L.; Schneider, B.I.; Phillips, W.D., Science, 287, 97, (2000)
[4] Khaykovich, L.; Scherck, F.; Ferrari, G.; Bourdel, T.; Cubizolles, J.; Carr, L.D.; Castin, Y.; Salomon, C., Science, 296, 1290, (2002)
[5] Strecker, K.E.; Partridge, G.B.; Truscott, A.G.; Hulet, R.G., Nature, 417, 153, (2002)
[6] Matthews, M.R.; Anderson, B.P.; Haljan, P.C.; Hall, D.S.; Wieman, C.E.; Cornell, E.A., Phys. rev. lett., 83, 2498, (1999)
[7] Butts, D.A.; Rokhsar, D.S., Nature, 397, 327, (1999)
[8] Jones, C.A.; Roberts, P.H., J. phys. A, 15, 2599, (1982)
[9] Jones, C.A.; Putterman, S.J.; Roberts, P.H., J. phys. A, 19, 2991, (1986)
[10] Law, C.T.; Swartzlander, G.A., Opt. lett., 18, 586, (1993)
[11] Pelinovsky, D.E.; Stepanyants, Yu.A.; Kivshar, Yu.S., Phys. rev. E, 51, 5016, (1995)
[12] Tikhonenko, V.; Christou, J.; Luther-Davies, B.; Kivshar, Yu.S., Opt. lett., 21, 1129, (1996)
[13] Lamb, H., Hydrodynamics, (1932), Cambridge Univ. Press Cambridge · JFM 26.0868.02
[14] Busch, Th.; Anglin, J.R., Phys. rev. lett., 84, 2298, (2000)
[15] Brazhnyi, V.A.; Konotop, V.V., Phys. rev. A, 68, 043613, (2003)
[16] Sakaguchi, H.; Tamura, M., J. phys. soc. jpn., 74, 292, (2005)
[17] Sakaguchi, H.; Malomed, B.A.; Sakaguchi, H.; Malomed, B.A., J. phys. B, J. phys. B, 37, 2225, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.