×

zbMATH — the first resource for mathematics

The robustness of generalized abstract fuzzy economies in generalized convex spaces. (English) Zbl 1235.91123
Summary: We study the economic model proposed by Anderlini and Canning, a parameterized class of generalized abstract fuzzy economies together with an associated abstract rationality function, and show that the structural stability of this model implies its robustness to \(\varepsilon \)-equilibria.

MSC:
91B54 Special types of economic markets (including Cournot, Bertrand)
91B52 Special types of economic equilibria
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aubin, J.P., Cooperative fuzzy games, Math. oper. res., 6, 1-13, (1981) · Zbl 0496.90092
[2] Aubin, J.P.; Ekeland, I., Applied nonlinear analysis, (1984), Wiley New York
[3] Anderini, L.; Canning, D., Structural stability implies robustness to bounded rationality, J. econ. theory, 101, 395-442, (2001) · Zbl 0996.91078
[4] Arrow, K.J.; Debreu, G., Existence of an equilibrium for a competitive economy, Econometrica, 22, 265-290, (1952) · Zbl 0055.38007
[5] Azrieli, Y.; Lehrer, E., On some families of cooperative fuzzy games, Int. J. game theory, 36, 1-15, (2007) · Zbl 1128.91005
[6] Bellman, R.E.; Zadeh, L.A., Decision-making in a fuzzy environment, Manage. sci., 17, 141-164, (1970) · Zbl 0224.90032
[7] Billot, A., Economic theory of fuzzy equilibria, (1992), Springer-Verlag New York · Zbl 0758.90008
[8] Borglin, A.; Keiding, H., Existence of equilibrium action and equilibrium: a note on the ‘new’ existence theorems, J. math. econ., 3, 313-316, (1976) · Zbl 0349.90157
[9] Borkotokey, S., Cooperative games with fuzzy coalitions and fuzzy characteristic functions, Fuzzy sets syst., 159, 138-151, (2008) · Zbl 1168.91311
[10] Briec, W.; Horvath, C., Nash points, Ky Fan inequality and equilibria of abstract economies in MAX-plus and B-convexity, J. math. anal. appl., 341, 188-199, (2008) · Zbl 1151.91017
[11] Butnariu, D., Fuzzy games: a description of the concept, Fuzzy sets syst., 1, 181-192, (1978) · Zbl 0389.90100
[12] Campos, F.A.; Villar, J.; Barqu, J.; Ruipez, J., Robust mixed strategies in fuzzy non-cooperative Nash games, Eng. optim., 40, 459-474, (2008)
[13] Chang, S.S.; Tan, K.K., Equilibria and maximal elements of abstract fuzzy economies and qualitative fuzzy games, Fuzzy sets syst., 125, 389-399, (2002) · Zbl 1011.91063
[14] Debreu, G., A social equilibrium existence theorem, Proc. natl. acad. sci. USA, 38, 886-895, (1952) · Zbl 0047.38804
[15] Ding, X.P.; Feng, H.L., Fixed point theorems and existence of equilibrium points of noncompact abstract economies for \(L_F^\ast\)-majorized mappings in \(\operatorname{FC}\)-spaces, Nonlinear anal. TMA, 72, 65-76, (2010) · Zbl 1216.54011
[16] Ding, X.P.; Wang, L., Fixed points, minimax inequalities and equilibria of noncompact abstract economies in FC-spaces, Nonlinear anal. TMA, 69, 730-746, (2008) · Zbl 1157.47037
[17] Fodor, J.C.; Roubens, M.R., Fuzzy preference modelling and multicriteria decision support, (1994), Kluwer Academic Publishers Dordrecht · Zbl 0827.90002
[18] Gale, D.; Mas-Colell, A., An equilibrium existence theorem for a general model without ordered preferences, J. math. econ., 2, 9-15, (1975) · Zbl 0324.90010
[19] Horvath, C., Contractibility and general convexity, J. math. anal. appl., 156, 341-357, (1991) · Zbl 0733.54011
[20] Horvath, C., Nonlinear and convex analysis, (1987), Dekker New York
[21] Huang, N.J., Some new equilibrium theorems for abstract economies, Appl. math. lett., 11, 1, 41-45, (1998) · Zbl 1075.91580
[22] Huang, N.J., A new equilibrium existence theorem for abstract fuzzy economies, Appl. math. lett., 12, 5, 1-5, (1999) · Zbl 0979.91062
[23] Huang, N.J., Existence of equilibrium for generalized abstract fuzzy economies, Fuzzy sets syst., 117, 151-156, (2001) · Zbl 0967.91038
[24] Hwang, Y.A.; Liao, Y.H., The consistent value of fuzzy games, Fuzzy sets syst., 160, 644-656, (2009) · Zbl 1180.91060
[25] Hwang, Y.A.; Liao, Y.H., MAX-consistency, complement-consistency and the core of fuzzy games, Fuzzy sets syst, 159, 152-163, (2008) · Zbl 1168.91312
[26] Kim, W.K.; Kum, S.H.; Lee, K.H., On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear anal. TMA, 68, 2216-2227, (2008) · Zbl 1136.91309
[27] Kim, W.K.; Lee, K.H., Fuzzy fixed point and existence of equilibria of fuzzy games, J. fuzzy math., 6, 193-202, (1998) · Zbl 0903.90181
[28] Kim, W.K.; Lee, K.H., Generalized fuzzy games and fuzzy equilibria, Fuzzy sets syst., 122, 293-301, (2001) · Zbl 1022.91002
[29] Kim, W.K.; Tan, K.K., New existence theorems of equilibria and applications, Nonlinear anal. TMA, 47, 531-542, (2001) · Zbl 1042.47534
[30] Li, S.J.; Zhang, Q., A simplified expression of the Shapley function for fuzzy game, Eur. J. oper. res., 196, 234-245, (2009) · Zbl 1159.91315
[31] Lin, L.J.; Chen, L.F.; Ansari, Q.H., Generalized abstract economy and systems of generalized vector quasi-equilibrium problems, J. comput. appl. math., 208, 341-353, (2007) · Zbl 1124.91046
[32] Lin, L.J.; Liu, Y.H., The study of abstract economies with two constraint correspondences, J. optim. theory appl., 137, 41-52, (2008) · Zbl 1141.91034
[33] Mas-Colell, A., An equilibrium existence theorem without complete or transitive preferences, J. math. econ., 1, 237-246, (1974) · Zbl 0348.90033
[34] Nash, J., Equilibrium states in N-person games, Proc. natl. acad. sci. USA, 36, 48-49, (1950) · Zbl 0036.01104
[35] Park, S., Fixed points of better admissible maps on generalized convex spaces, J. Korea math. soc., 37, 6, 885-899, (2000) · Zbl 0967.47039
[36] Park, S.; Kim, H., Coincidence theorems for admissible multifunctions on generalized convex spaces, J. math. anal. appl., 197, 173-187, (1996) · Zbl 0851.54039
[37] Park, S.; Kim, H., Foundations of the KKM theory on generalized convex spaces, J. math. anal. appl., 209, 551-571, (1997) · Zbl 0873.54048
[38] Patriche, M., Equilibria of free abstract fuzzy economies, An. stiint. univ. ovidius constanta, 17, 143-154, (2009) · Zbl 1199.91135
[39] Tan, K.K.; Yu, J.; Z Yuan, X., The stability of coincident points for multivalued mappings, Nonlinear anal. TMA, 25, 163-198, (1995)
[40] Tan, K.K.; Zhang, X.L., Fixed point theorem on G-convex spaces and applications, Nonlinear funct. anal. appl., 1, 1-19, (1996)
[41] Wang, L.; Huang, N.J.; Lee, C.S., Some new existence theorems of generalized abstract fuzzy economies with applications, Taiwanese J. math., 14, 47-57, (2010) · Zbl 1192.91140
[42] Yu, C.; Yu, J., On structural stability and robustness to bounded rationality, Nonlinear anal. TMA, 65, 583-592, (2006) · Zbl 1186.91053
[43] Yuan, X.Z., KKM theory and applications in nonlinear analysis, (1999), Marcel Dekker, Inc New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.