×

zbMATH — the first resource for mathematics

Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids. (English) Zbl 1235.80005
Summary: Thermal performance, transient behavior and operational start-up characteristics of flat-shaped heat pipes using nanofluids are analyzed in this work. Three different primary nanofluids namely, \(CuO\), \(Al_{2}O_{3}\), and \(TiO_{2}\) were utilized in our analysis. A comprehensive analytical model, which accounts in detail the heat transfer characteristics within the pipe wall and the wick within the condensation and evaporation sections, was utilized. The results illustrate enhancement in the heat pipe performance while achieving a reduction in the thermal resistance for both flat-plate and disk-shaped heat pipes throughout the transient process. It was shown that a higher concentration of nanoparticles increases the thermal performance of either the flat-plate or disk-shaped heat pipes. We have also established that for the same heat load a smaller size flat-shaped heat pipe can be utilized when using nanofluids.
MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
80A22 Stefan problems, phase changes, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shafahi, M.; Bianco, V.; Vafai, K.; Manca, O.: An investigation of the thermal performance of cylindrical heat pipes using nanofluids, Int. J. Heat mass transfer 53, No. 1 – 3, 376-383 (2010) · Zbl 1180.80043 · doi:10.1016/j.ijheatmasstransfer.2009.09.019
[2] Shafahi, M.; Bianco, V.; Vafai, K.; Manca, O.: Thermal performance of flat-shaped heat pipes using nanofluids, Int. J. Heat mass transfer 53, No. 7 – 8, 1438-1445 (2010) · Zbl 1183.80057 · doi:10.1016/j.ijheatmasstransfer.2009.12.007
[3] Vafai, K.; Wang, W.: Analysis of flow and heat transfer characteristics of an asymmetrical flat plate heat pipe, Int. J. Heat mass transfer 35, No. 9, 2087-2099 (1992)
[4] Vafai, K.; Zhu, N.; Wang, W.: Analysis of asymmetric disk-shaped and flat-plate heat pipes, J. heat transfer 117, No. 1, 209-218 (1995)
[5] Wang, Y.; Vafai, K.: Transient characterization of flat plate heat pipes during startup and shutdown operations, Int. J. Heat mass transfer 43, No. 15, 2641-2655 (2000) · Zbl 1065.80500 · doi:10.1016/S0017-9310(99)00295-1
[6] Wang, Y.; Vafai, K.: An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe, Int. J. Heat mass transfer 43, No. 15, 2657-2668 (2000)
[7] Wang, Y.; Vafai, K.: An experimental investigation of the transient characteristics on a flat-plate heat pipe during startup and shutdown operations, J. heat transfer 122, No. 3, 525-535 (2000)
[8] Yang, X. F.: Heat transfer performance of a horizontal micro-grooved heat pipe using cuo nanofluid, J. micromech. Microeng. 18, No. 3, 035038 (2008)
[9] Zhu, N.; Vafai, K.: The effects of liquid – vapor coupling and non-darcian transport on asymmetrical disk-shaped heat pipes, Int. J. Heat mass transfer 39, No. 10, 2095-2113 (1996) · Zbl 0963.76593 · doi:10.1016/0017-9310(95)00279-0
[10] Zhu, N.; Vafai, K.: Numerical and analytical investigation of vapor flow in a disk-shaped heat pipe incorporating secondary flow, Int. J. Heat mass transfer 40, No. 12, 2887-2900 (1997) · Zbl 0925.76803 · doi:10.1016/S0017-9310(96)00325-0
[11] Zhu, N.; Vafai, K.: Vapor and liquid flow in an asymmetrical flat plate heat pipe: a three-dimensional analytical and numerical investigation, Int. J. Heat mass transfer 41, No. 1, 159-174 (1998) · Zbl 0925.76818 · doi:10.1016/S0017-9310(97)00075-6
[12] Zhu, N.; Vafai, K.: Analytical modeling of the startup characteristics of asymmetrical flat-plate and diskshaped heat pipes, Int. J. Heat mass transfer 41, No. 17, 2619-2637 (1998) · Zbl 0962.76630 · doi:10.1016/S0017-9310(97)00325-6
[13] Zhu, N.; Vafai, K.: Analysis of cylindrical heat pipes incorporating the effects of liquid – vapor coupling and non-darcian transport – a closed form solution, Int. J. Heat mass transfer 42, No. 18, 3405-3418 (1999) · Zbl 0969.76091 · doi:10.1016/S0017-9310(99)00017-4
[14] Faghri, A.: Heat pipe science and technology, (1995)
[15] Kang, S. -W.; Wei, W. -C.; Tsai, S. -H.; Yang, S. -Y.: Experimental investigation of silver nano-fluid on heat pipe thermal performance, Appl. thermal eng. 26, No. 17 – 18, 2377-2382 (2006)
[16] Kang, S. -W.; Wei, W. -C.; Tsai, S. -H.; Huang, C. -C.: Experimental investigation of nanofluids on sintered heat pipe thermal performance, Appl. thermal eng. 29, No. 5 – 6, 973-979 (2009)
[17] Lin, Y. -H.; Kang, S. -W.; Chen, H. -L.: Effect of silver nano-fluid on pulsating heat pipe thermal performance, Appl. therm. Eng. 28, No. 11 – 12, 1312-1317 (2008)
[18] Ma, H. B.; Wilson, C.; Borgmeyer, B.; Park, K.; Yu, Q.; Choi, S. U. S.; Tirumala, M.: Effect of nanofluid on the heat transport capability in an oscillating heat pipe, Appl. phys. Lett. 88, No. 14, 143113-143116 (2006)
[19] Ma, H. B.; Wilson, C.; Yu, Q.; Park, K.; Choi, U. S.; Tirumala, M.: An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe, J. heat transfer 128, No. 11, 1213-1216 (2006)
[20] Naphon, P.; Assadamongkol, P.; Borirak, T.: Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency, Int. commun. Heat mass 35, No. 10, 1316-1319 (2008)
[21] Naphon, P.; Thongkum, D.; Assadamongkol, P.: Heat pipe efficiency enhancement with refrigerant – nanoparticles mixtures, Energy convers. Manage. 50, No. 3, 772-776 (2009)
[22] Tournier, J. M.; El-Genk, M. S.: A heat pipe transient analysis model, Int. J. Heat mass transfer 37, No. 5, 753-762 (1994) · Zbl 0900.76626 · doi:10.1016/0017-9310(94)90113-9
[23] Tsai, C. Y.; Chien, H. T.; Ding, P. P.; Chan, B.; Luh, T. Y.; Chen, P. H.: Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance, Mater. lett. 58, No. 9, 1461-1465 (2004)
[24] M. Thomson, C. Ruel, M. Donato, Characterization of a flat plate heat pipe for electronic cooling in a space environment, in: National Heat Transfer Conference Philadelphia, PA HTD, 1989, pp. 59 – 65.
[25] Chang, W. S.; Colwell, G. T.: Mathematical modeling of the transient operating characteristics of a low-temperature heat pipe, Numer. heat transfer 8, No. 2, 169-186 (1985) · Zbl 0568.76005 · doi:10.1080/01495728508961848
[26] Zhou, S. -Q.; Ni, R.: Measurement of the specific heat capacity of water-based al2o3 nanofluid, Appl. phys. Lett. 92, No. 9, 093123 (2008)
[27] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles.
[28] Pak, B. C.; Cho, Y. I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. heat transfer 11, No. 2, 151-170 (1998)
[29] Brinkman, H. C.: The viscosity of concentrated suspensions and solutions, J. chem. Phys. 20, No. 4, 571 (1952)
[30] Do, K. H.; Jang, S. P.: Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved Wick, Int. J. Heat mass transfer 53, No. 9 – 10, 2183-2192 (2010) · Zbl 1191.80011 · doi:10.1016/j.ijheatmasstransfer.2009.12.020
[31] Liu, Z. -H.; Xiong, J. -G.; Bao, R.: Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface, Int. J. Multiphase flow 33, No. 12, 1284-1295 (2007)
[32] R.R. Riehl, Analysis of loop heat pipe behavior using nanofluid, in: Heat Powered Cycles International Conference (HPC), New Castle, UK, Paper 06102, 2006.
[33] Tournier, J. -M.; El-Genk, M. S.; Juhasz, A. J.: Heat-pipe transient model for space applications, AIP conf. Proc. 217, No. 2, 857-868 (1991)
[34] Dunn, P. D.; Reay, D. A.: Heat pipes, (1976)
[35] Yu, W.; Choi, S. U. S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. nanoparticle res. 5, No. 1, 167-171 (2003)
[36] Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids, Int. J. Heat mass transfer 54, No. 19 – 20, 4410-4428 (2011) · Zbl 1227.80022 · doi:10.1016/j.ijheatmasstransfer.2011.04.048
[37] Do, K. H.; Ha, H. J.; Jang, S. P.: Thermal resistance of screen mesh Wick heat pipes using the water-based al2o3 nanofluids, Int. J. Heat mass transfer 53, No. 25 – 26, 5888-5894 (2010)
[38] Qu, J.; Wu, H. Y.; Cheng, P.: Thermal performance of an oscillating heat pipe with al2o3 – water nanofluids, Int. commun. Heat mass transfer 37, 111-115 (2010)
[39] Vafai, K.; Sozen, M.: An investigation of a latent heat storage porous bed and condensing flow through it, ASME J. Heat transfer 112, 1014-1022 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.