×

zbMATH — the first resource for mathematics

The expanding zoo of Calabi-Yau threefolds. (English) Zbl 1234.81110
Summary: This is a short review of recent constructions of new Calabi-Yau threefolds with small Hodge numbers and/or nontrivial fundamental group, which are of particular interest for model building in the context of heterotic string theory. The two main tools are topological transitions and taking quotients by actions of discrete groups. Both of these techniques can produce new manifolds from existing ones, and they have been used to bring many new specimens to the previously sparse corner of the Calabi-Yau zoo, where both Hodge numbers are small. Two new manifolds are also obtained here from hyperconifold transitions, including the first example with fundamental group \(S_3\), the smallest non-Abelian group.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14F35 Homotopy theory and fundamental groups in algebraic geometry
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] P. Candelas, X. de la Ossa, Y.-H. He, and B. Szendroi, “Triadophilia: a special corner in the landscape,” Advances in Theoretical and Mathematical Physics, vol. 12, no. 2, pp. 429-473, 2008. · Zbl 1144.81499 · doi:10.4310/ATMP.2008.v12.n2.a6 · euclid:atmp/1210083230
[2] P. Candelas and R. Davies, “New Calabi-Yau manifolds with small hodge numbers,” Fortschritte der Physik, vol. 58, no. 4-5, pp. 383-466, 2010. · Zbl 1194.14062 · doi:10.1002/prop.200900105
[3] P. Green and T. Hubsch, “Calabi-Yau manifolds as complete intersections in products of complex projective spaces,” Communications in Mathematical Physics, vol. 109, no. 1, pp. 99-108, 1987. · Zbl 0611.53055 · doi:10.1007/BF01205673
[4] P. Candelas, A. M. Dale, C. A. Lutken, and R. Schimmrigk, “Complete intersection Calabi-Yau manifolds,” Nuclear Physics B, vol. 298, no. 3, pp. 493-525, 1988. · doi:10.1016/0550-3213(88)90352-5
[5] P. S. Green, T. Hubsch, and C. A. Lutken, “All the Hodge numbers for all Calabi-Yau complete intersections Calabi-Yau manifolds,” Classical and Quantum Gravity, vol. 6, no. 2, pp. 105-124, 1989. · Zbl 0657.53063 · doi:10.1088/0264-9381/6/2/006
[6] V. Batyrev and L. A. Borisov, “On Calabi-Yau complete intersections in toric varieties,” http://arxiv.org/abs/alg-geom/9412017. · Zbl 0908.14015
[7] M. Kreuzer and H. Skarke, “On the classification of reflexive polyhedra,” Communications in Mathematical Physics, vol. 185, no. 2, pp. 495-508, 1997. · Zbl 0894.14026 · doi:10.1007/s002200050100
[8] M. Kreuzer and H. Skarke, “Complete classification of reflexive polyhedra in four-dimensions,” Advances in Theoretical and Mathematical Physics, vol. 4, no. 6, pp. 1209-1230, 2000. · Zbl 1017.52007
[9] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum configurations for superstrings,” Nuclear Physics B, vol. 258, no. 1, pp. 46-74, 1985. · doi:10.1016/0550-3213(85)90602-9
[10] S.-T. Yau, “Compact three-dimensional Kähler manifolds with zero Ricci curvature,” in Proceedings of the Argonne-Chicago Symposium on Anomalies, Geometry and Topology, A. White, Ed., pp. 395-406, World Scientific, 1985.
[11] A. Strominger and E. Witten, “New manifolds for superstring compactification,” Communications in Mathematical Physics, vol. 101, no. 3, pp. 341-361, 1985. · doi:10.1007/BF01216094
[12] P. Candelas, C. A. Lutken, and R. Schimmrigk, “Complete intersection Calabi-Yau manifolds II: three generation manifolds,” Nuclear Physics B, vol. 306, no. 1, pp. 113-136, 1988. · doi:10.1016/0550-3213(88)90173-3
[13] R. Schimmrigk, “A new construction of a three-generation Calabi-Yau manifold,” Physics Letters B, vol. 193, no. 2-3, pp. 175-180, 1987. · doi:10.1016/0370-2693(87)91218-4
[14] A. Beauville, “A Calabi-Yau threefold with non-abelian fundamental group,” in New Trends in Algebraic Geometry, vol. 264 of London Mathematical Society Lecture Note Series, pp. 13-17, Cambridge University Press, Cambridge, UK, 1999. · Zbl 0955.14029
[15] M. Gross and S. Popescu, “Calabi-Yau threefolds and moduli of abelian surfaces I,” Compositio Mathematica, vol. 127, no. 2, pp. 169-228, 2001. · Zbl 1063.14051 · doi:10.1023/A:1012076503121
[16] V. Braun, B. A. Ovrut, T. Pantev, and R. Reinbacher, “Elliptic Calabi-Yau threefolds with \Bbb Z3\times \Bbb Z3 Wilson lines,” Journal of High Energy Physics, vol. 2004, no. 12, article 062, 2004. · doi:10.1088/1126-6708/2004/12/062
[17] V. Batyrev and M. Kreuzer, “Integral cohomology and mirror symmetry for Calabi-Yau 3-folds,” in Proceedings of ”Mirror Symmetry IV”, AMS/IP Studies in Advanced Mathematics, N. Yui, S.-T. Yau, S.-T. Yau, and J. D. Lewis, Eds., 2006, http://arxiv.org/abs/math/0505432. · Zbl 1116.14033
[18] Z. Hua, “Classification of free actions on complete intersections of four quadrics,” http://arxiv.org/abs/0707.4339. · Zbl 1252.14025
[19] V. Bouchard and R. Donagi, “On a class of non-simply connected Calabi-Yau threefolds,” Communications in Number Theory and Physics, vol. 2, no. 1, pp. 1-61, 2008. · Zbl 1165.14032 · doi:10.4310/CNTP.2008.v2.n1.a1
[20] L. Borisov and Z. Hua, “On Calabi-Yau threefolds with large nonabelian fundamental groups,” Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 1549-1551, 2008. · Zbl 1131.14044 · doi:10.1090/S0002-9939-07-09268-4
[21] M. Gross and S. Popescu, “Calabi-yau three-folds and moduli of abelian surfaces II,” Transactions of the American Mathematical Society, vol. 363, no. 7, pp. 3573-3599, 2011. · Zbl 1228.14039 · doi:10.1090/S0002-9947-2011-05179-2
[22] V. Braun, P. Candelas, and R. Davies, “A three-generation Calabi-Yau manifold with small Hodge numbers,” Fortschritte der Physik, vol. 58, no. 4-5, pp. 467-502, 2010. · Zbl 1194.14061 · doi:10.1002/prop.200900106
[23] V. Braun, “On free quotients of complete intersection Calabi-Yau manifolds,” JHEP 1104 (2011) 005, http://arxiv.org/abs/1003.3235. · Zbl 1250.14026
[24] P. Candelas and A. Constantin, “Completing the web of Z3-quotients of complete intersection Calabi-Yau manifolds,” http://arxiv.org/abs/1010.1878. · Zbl 1243.81147
[25] V. Braun, “The 24-cell and Calabi-Yau threefolds with hodge numbers (1,1),” http://arxiv.org/abs/1102.4880. · Zbl 1348.14104
[26] G. Bini and F. F. Favale, “Groups acting freely on Calabi-Yau threefolds embedded in a product of del Pezzo surfaces,” http://arxiv.org/abs/1104.0247. · Zbl 1271.14054
[27] A. Stapledon, “New mirror pairs of Calabi-Yau orbifolds,” http://arxiv.org/abs/1011.5006. · Zbl 1266.14033
[28] E. Freitag and R. Salvati Manni, “Some siegel threefolds with a Calabi-Yau model II,” http://arxiv.org/abs/1001.0324. · Zbl 1296.14031
[29] E. Freitag and R. Salvati Manni, “On siegel threefolds with a projective Calabi-Yau model,” http://arxiv.org/abs/1103.2040. · Zbl 1260.11036
[30] P. S. Green and T. Hubsch, “Connecting moduli spaces of Calabi-Yau threefolds,” Communications in Mathematical Physics, vol. 119, no. 3, pp. 431-441, 1988. · Zbl 0684.53077 · doi:10.1007/BF01218081
[31] P. S. Green and T. Hubsch, “Possible phase transitions among Calabi-Yau compactifications,” Physical Review Letters, vol. 61, no. 10, pp. 1163-1166, 1988. · doi:10.1103/PhysRevLett.61.1163
[32] P. Candelas, P. S. Green, and T. Hubsch, “Finite distance between distinct Calabi-Yau manifolds,” Physical Review Letters, vol. 62, no. 17, pp. 1956-1959, 1989. · doi:10.1103/PhysRevLett.62.1956
[33] P. Candelas, P. S. Green, and T. Hubsch, “Rolling among Calabi-Yau vacua,” Nuclear Physics B, vol. 330, no. 1, pp. 49-102, 1990. · Zbl 0985.32502 · doi:10.1016/0550-3213(90)90302-T
[34] V. Batyrev and M. Kreuzer, “Constructing new Calabi-Yau 3-folds and their mirrors via conifold transitions,” Advances in Theoretical and Mathematical Physics, no. 14, pp. 879-898, 2010, http://arxiv.org/abs/0802.3376. · Zbl 1242.14037
[35] S. Filippini and V. Garbagnati, “A rigid Calabi-Yau 3-fold,” http://arxiv.org/abs/1102.1854. · Zbl 1435.14036
[36] R. Davies, “Quotients of the conifold in compact Calabi-Yau threefolds, and new topological transitions,” Advances in Theoretical and Mathematical Physics, no. 14, pp. 965-990, 2010, http://arxiv.org/abs/0911.0708. · Zbl 1242.14038
[37] R. Davies, “Hyperconifold transitions, mirror symmetry, and string theory,” Nuclear Physics B, vol. 850, pp. 214-233, 2011, http://arxiv.org/abs/1102.1428. · Zbl 1210.47063 · doi:10.1112/S0025579310001579
[38] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, “Stabilizing the complex structure in heterotic Calabi-Yau vacua,” Journal of High Energy Physics, vol. 2011, no. 2, article 88, 2011. · Zbl 1294.81153 · doi:10.1007/JHEP02(2011)088
[39] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, “Stabilizing all geometric moduli in heterotic Calabi-Yau vacua,” Physical Review D, vol. 83, Article ID 106011, 14 pages, 2011. · Zbl 1294.81153
[40] M. F. Atiyah and R. Bott, “A Lefschetz fixed point formula for elliptic differential operators,” Bulletin of the American Mathematical Society, vol. 72, pp. 245-250, 1966. · Zbl 0151.31801 · doi:10.1090/S0002-9904-1966-11483-0
[41] M. F. Atiyah and R. Bott, “A Lefschetz fixed point formula for elliptic complexes: II applications,” Annals of Mathematics, vol. 88, pp. 451-491, 1968. · Zbl 0167.21703 · doi:10.2307/1970721
[42] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular 3-1-2-a computer algebra system for polynomial computations,” http://www.singular.uni-kl.de.
[43] Wolfram Research, Mathematica, Version 8.0, Wolfram Research, 2010.
[44] J. Gray, Y.-H He, A. Ilderton, and A. Lukas, “Stringvacua: a mathematica package for studying vacuum configurations in string phenomenology,” Computer Physics Communications, vol. 180, no. 1, pp. 107-119, 2009. · Zbl 1198.81156 · doi:10.1016/j.cpc.2008.08.009
[45] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Springer, New York, NY, USA, 1977. · Zbl 0367.14001
[46] B. McInnes, “Group-theoretic aspects of the Hosotani mechanism,” Journal of Physics A, vol. 22, no. 13, pp. 2309-2328, 1989. · Zbl 0693.53008 · doi:10.1088/0305-4470/22/13/026
[47] E. Witten, “New issues in manifolds of SU(3) holonomy,” Nuclear Physics B, vol. 268, no. 1, pp. 79-112, 1986. · doi:10.1016/0550-3213(86)90202-6
[48] J. Li and S.-T. Yau, “The existence of supersymmetric string theory with torsion,” Journal of Differential Geometry, vol. 70, no. 1, pp. 143-181, 2005. · Zbl 1102.53052 · euclid:jdg/1143572017
[49] R. Davies, Calabi-Yau threefolds and heterotic string compactification, DPhil thesis, Oxford University, Oxford, UK, 2010, http://ora.ouls.ox.ac.uk/objects/uuid:be92aac5-6874-431e-95a0-ac61a88ee63d.
[50] V. Braun, Y.-H. He, B. A. Ovrut, and T. Pantev, “The exact MSSM spectrum from string theory,” Journal of High Energy Physics, vol. 2006, no. 5, article 043, 2006. · Zbl 1101.81086 · doi:10.1088/1126-6708/2006/05/043
[51] V. Braun, Y.-H. He, and B. A. Ovrut, “Yukawa couplings in heterotic standard models,” Journal of High Energy Physics, vol. 2006, no. 4, article 019, 2006. · doi:10.1088/1126-6708/2006/04/019
[52] L. B. Anderson, J. Gray, Y.-H. He, and A. Lukas, “Exploring positive monad bundles and a new heterotic standard model,” Journal of High Energy Physics, vol. 2010, no. 2, article 054, 2010. · Zbl 1270.81146
[53] V. Bouchard and R. Donagi, “An SU(5) heterotic standard model,” Physics Letters B, vol. 633, no. 6, pp. 783-791, 2006. · Zbl 1247.81348 · doi:10.1016/j.physletb.2005.12.042
[54] V. Bouchard, M. Cvetic, and R. Donagi, “Tri-linear couplings in an heterotic minimal supersymmetric standard model,” Nuclear Physics B, vol. 745, no. 1-2, pp. 62-83, 2006. · Zbl 1214.81193 · doi:10.1016/j.nuclphysb.2006.03.032
[55] V. Braun, B. A. Ovrut, M. Kreuzer, and E. Scheidegger, “Worldsheet instantons and torsion curves, part A: direct computation,” Journal of High Energy Physics, vol. 2007, no. 10, article 022, 2007. · Zbl 1248.81156 · doi:10.1088/1126-6708/2007/10/022
[56] V. Braun, B. A. Ovrut, M. Kreuzer, and E. Scheidegger, “Worldsheet instantons and torsion curves part B: mirror symmetry,” Journal of High Energy Physics, vol. 2007, no. 10, article 023, 2007. · Zbl 1248.81156 · doi:10.1088/1126-6708/2007/10/023
[57] A. Bak, V. Bouchard, and R. Donagi, “Exploring a new peak in the heterotic landscape,” Journal of High Energy Physics, vol. 2010, no. 6, article 108, 2010. · Zbl 1288.81089 · doi:10.1007/JHEP06(2010)108
[58] M. Reid, “The moduli space of 3-folds with K=0 may nevertheless be irreducible,” Mathematische Annalen, vol. 278, no. 1-4, pp. 329-334, 1987. · Zbl 0649.14021 · doi:10.1007/BF01458074 · eudml:164295
[59] A. Strominger, “Massless black holes and conifolds in string theory,” Nuclear Physics B, vol. 451, no. 1-2, pp. 96-108, 1995. · Zbl 0925.83071 · doi:10.1016/0550-3213(95)00287-3
[60] B. R. Greene, D. R. Morrison, and A. Strominger, “Black hole condensation and the unification of string vacua,” Nuclear Physics B, vol. 451, no. 1-2, pp. 109-120, 1995. · Zbl 0908.53041 · doi:10.1016/0550-3213(95)00371-X
[61] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, UK, 2002. · Zbl 1044.55001
[62] P. Candelas and X. C. de la Ossa, “Comments on conifolds,” Nuclear Physics B, vol. 342, no. 1, pp. 246-268, 1990. · doi:10.1016/0550-3213(90)90577-Z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.