×

Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach. (English) Zbl 1234.74053

Summary: An implicit partitioned arbitrary Lagrangian-Eulerian approach for fluid-structure interaction computations is considered. Enhancements of the coupled solution procedure by nonlinear multigrid techniques, an adaptive underrelaxation and proper grid movement techniques are investigated.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

MpCCI; FASTEST; FEAP
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aitken C (1937) Studies in practical mathematics II. The evaluation of the latent roots and latent vectors of a matrix. R Soc Edinb 57: 269–304 · Zbl 0017.14701
[2] de Boer A, van der Schoot MS, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput Struct 85: 784–795
[3] Briggs WL, Henson VE, McCormick S (2000) Multigrid tutorial, 2 nd edn. SIAM, Philadelphia
[4] Demirdžić I, Perić VE (1995) Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput Methods Appl Mech Eng 125: 235–255
[5] Demirdžić I, Perić M (1988) Space conservation law in finite volume calculations of fluid flow. Int J Numer Methods Fluids 8: 1037–1050 · Zbl 0647.76018
[6] Farhat C, Degand C, Koobus B, Lesoinne M (1998) Torsional springs for two-dimensional dynamic unstructured fluid meshes. Comput Methods Appl Mech Eng 163: 231–245 · Zbl 0961.76070
[7] FASTEST (2005) User manual. Department of numerical methods in mechanical engineering, Technische Universität Darmstadt
[8] Heck M, Sternel DC, Schäfer M, Yigit S (2006) Influence of numerical and physical parameters on an implicit partitioned fluid-structure solver. In: European conference on computational fluid dynamics, TU Delft, The Netherlands
[9] Hron J, Turek S (2006) A monolithic FEM/multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics. In: Bungartz HJ, Schäfer M(eds) Fluid–structure interaction. Modelling, simulation, optimization. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 146–170 · Zbl 1323.74086
[10] Hübner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid-structure interaction using space-time finite elements. Comput Methods Appl Mech Eng 193: 2087–2104 · Zbl 1067.74575
[11] Hughes TJR, Liu WK, Zimmmermann TK (1981) Lagrangian-eulerian finite element formulation for incompressible flow computations. Adv Appl Mech 29: 329–349
[12] Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure poisson equation. Int J Numer Methods Eng 64: 167–203 · Zbl 1104.74026
[13] Löhner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range and applicability of the loose coupling approach for fsi simulation. In: Bungartz HJ, Schäfer M(eds) Fluid-Structure interaction. Modelling, simulation, optimization. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 82–100 · Zbl 1323.74091
[14] Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282 · Zbl 0846.76048
[15] MpCCI (2004) Mesh-based parallel code coupling interface, user guide V2.0. Fraunhofer Institut für Algorithmen und wissenschaftliches Rechnen SCAI, Bonn
[16] Piperno S, Farhat C, Larrouturou B (1995) Partitioned procedures for the transient solution of coupled aeroelastic problems. Part I: Model problem, theory and two-dimensional application. Comput Methods Appl Mech Eng 124: 79–112 · Zbl 1067.74521
[17] Schäfer M, Heck M, Yigit S (2006) An implicit partitioned method for numerical simulation of fluid-structure interaction. In: Bungartz HJ, Schäfer M(eds) Fluid-Structure interaction. Modelling, simulation, optimization. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 171–194 · Zbl 1323.74093
[18] Smith RE (1998) Transfinite interpolation (TFI) generation systems. In: Thompson JF, Soni BK, Wheaterill NP(eds) Handbook of Grid Generation. CRC Press, Boca Raton, pp 3–15
[19] Spekreijse SP (1995) Elliptic grid generation based on laplace equations and algebraic transformations. J Comput Phys 118: 38–61 · Zbl 0823.65120
[20] Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032 · Zbl 1067.74587
[21] Taylor RL (2002) FEAP–a finite element analysis program, user manual. University of California, Berkeley
[22] Taylor RL (2003) FEAP–a finite element analysis program. Version 7.5 Theory Manual. University of California, Berkeley
[23] Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3d flows. Computer 26: 27–36 · Zbl 05090697
[24] Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351 · Zbl 0745.76044
[25] Wall WA, Gerstenberger A, Gamnitzer P, Förster C, Ramm E (2006) Large deformation fluid-structure interaction–advances in ale methods and new fixed grid approaches. In: Bungartz HJ, Schäfer M(eds) Fluid-Structure Interaction. Modelling, simulation, optimization. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 195–232 · Zbl 1323.74097
[26] Wood WL (1990) Practical time-stepping schemes. Clarendon Press, Oxford · Zbl 0694.65043
[27] Wren GP, Ray SE, Aliabadi SK, Tezduyar TE (1997) Simulation of flow problems with moving mechanical components, fluid- structure interactions and two-fluid interfaces. Int J Numer Methods Fluids 24: 1433–1448 · Zbl 0881.76054
[28] Yigit S, Heck M, Sternel DC, Schäfer M (2007) Efficiency of fluid-structure interaction simulations with adaptive underrelaxation and multigrid acceleration. Int J Multiphys 1(1): 85–99
[29] Yigit S, Heck M, Schäfer M (2008) Grid movement techniques and their influences on laminar fluid-structure interaction computations. J Fluids Struct (accepted)
[30] van Zuijlen AH, Bosscher S, Bijl H (2007) Two level algorithms for partitioned fluid-structure interaction computations. Comput Methods Appl Mech Eng 196: 1458–1470 · Zbl 1173.76369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.