×

zbMATH — the first resource for mathematics

Global well-posedness for the micropolar fluid system in critical Besov spaces. (English) Zbl 1234.35193
The authors consider an incompressible micropolar fluid system. This is a kind of non Newtonian fluid, and is a model of the suspensions, animal blood, liquid crystals which cannot be characterized appropriately by the Navier-Stokes system. It is described by the fluid velocity \(u(x,t)=(u_1 ,u_2 ,u_3)\), the velocity of rotation of particles \(\omega (x,t)=(\omega_1 ,\omega_2 ,\omega_3 )\), and the pressure \(\pi (x,t)\) in the following form: \[ \left\{\begin{aligned} & \partial_t u -\Delta u +u\cdot\nabla u +\nabla \pi -\nabla\times \omega =0,\\ & \partial_t \omega -\Delta \omega +u\cdot\nabla \omega +2\omega -\nabla\text{div}\,\omega -\nabla\times u=0,\\ & \text{div}\,u=0,\\ & u(x,0)=u_0 (x),\quad \omega (x,0)=\omega_0 (x). \end{aligned}\right. \] They assume that the initial values \(v_0, w_0\) belong to the Besov space \(\Dot{B}^{\frac{p}{3}-1}_{p.\infty}\) for some \(1\leq p<6\) with small norms (this type of Besov space is called critical). They prove the existence of the solution in \(C(0,\infty ;\Dot{B}^{\frac{p}{3}-1}_{p.\infty})\). They also prove the uniqueness under an additional assumption. For this purpose they consider an associated linear system \[ \left\{\begin{aligned} & \partial_t u -\Delta u -\nabla\times \omega =0,\\ & \partial_t \omega -\Delta \omega +2\omega -\nabla\times u=0,\\ \end{aligned}\right. \] and study the action of its Green matrix.
One can apply thier result directly to an incompressible Navier-Stokes equation, by setting \(\omega =0\).

MSC:
35Q35 PDEs in connection with fluid mechanics
76A05 Non-Newtonian fluids
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bony, J.-M., Calcul symbolique et propagation des singularitiés pour LES équations aux dérivées partielles non linéaires, Ann. sci. ecole norm. sup., 14, 209-246, (1981) · Zbl 0495.35024
[2] Boldrini, J.; Rojas-Medar, M.A.; Fernandez-Cara, E., Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. math. pures appl., 82, 1499-1525, (2003) · Zbl 1075.76005
[3] Bahouri, H.; Chemin, J.-Y.; Danchin, R., Fourier analysis and nonlinear partial differential equations, Grundlehren math. wiss., vol. 243, (2011), Springer-Verlag · Zbl 1227.35004
[4] Cannone, M., Ondelettes, paraproduits et Navier-Stokes, (1995), Diderot Editeur Paris · Zbl 1049.35517
[5] Cannone, M., A generalization of a theorem by Kato on Navier-Stokes equations, Rev. mat. iberoamericana, 13, 515-541, (1997) · Zbl 0897.35061
[6] Cannone, M.; Karch, G., Smooth or singular solutions to the Navier-Stokes system, J. differential equations, 197, 247-274, (2004) · Zbl 1042.35043
[7] Cannone, M.; Planchon, F., More Lyapunov functions for the Navier-Stokes equations, (), 19-26 · Zbl 0999.35071
[8] Chen, Q.; Miao, C.; Zhang, Z., Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity, Comm. pure appl. math., LXIII, 1173-1224, (2010) · Zbl 1202.35002
[9] Chen, Q.; Miao, C.; Zhang, Z., Global well-posedness for the 3D rotating Navier-Stokes equations with highly oscillating initial data · Zbl 1268.35096
[10] Dong, B.; Zhang, Z., Global regularity for the 2D micropolar fluid flows with zero angular viscosity, J. differential equations, 249, 200-213, (2010) · Zbl 1402.35220
[11] Eringen, A.C., Theory of micropolar fluids, J. math. mech., 16, 1-18, (1966) · Zbl 0145.21302
[12] V.-Roa, E.J.; Ferreira, L.C.F., Micropolar fluid system in a space of distributions and large time behavior, J. math. anal. appl., 332, 1425-1445, (2007) · Zbl 1122.35109
[13] Fujita, H.; Kato, T., On the Navier-Stokes initial value problem I, Arch. ration. mech. anal., 16, 269-315, (1964) · Zbl 0126.42301
[14] Galdi, G.P.; Rionero, S., A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. engrg. sci., 15, 105-108, (1977) · Zbl 0351.76006
[15] Kato, T., Strong \(L^p\)-solutions of Navier-Stokes equations in \(\mathbb{R}^n\) with applications to weak solutions, Math. Z., 187, 471-480, (1984) · Zbl 0545.35073
[16] Lukaszewicz, G., Micropolar fluids. theory and applications, modeling and simulation in science, engineering and technology, (1999), Birkhäuser Boston
[17] Rojas-Medar, M.A., Magneto-micropolar fluid motion: existence and uniqueness of strong solution, Math. nachr., 188, 301-319, (1997) · Zbl 0893.76006
[18] Yuan, B., On the regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. amer. math. soc., 138, 2025-2036, (2010) · Zbl 1191.35217
[19] Yuan, J., Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. methods appl. sci., 31, 1113-1130, (2008) · Zbl 1137.76071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.