×

zbMATH — the first resource for mathematics

Representation theorems for \(t\)-wright convexity. (English) Zbl 1234.26036
Author’s abstract: We prove some representation theorems for \(t\)-Wright convex functions, as a consequence of a support theorem, which was proved by the author in an earlier paper.

MSC:
26B25 Convexity of real functions of several variables, generalizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bernstein, F.; Doetsch, G., Zur theorie der konvexen functionen, Math. ann., 76, 514-526, (1915) · JFM 45.0627.02
[2] Ger, R., On extension of polynomial functions, Results math., 26, 281-289, (1994) · Zbl 0829.39006
[3] Kominek, Z., A continuity result on t-wright convex functions, Publ. mat., 63, 213-219, (2003) · Zbl 1053.26007
[4] Kominek, Z., Convex functions in linear spaces, Pr. nauk. uniw. sl. katow., vol. 1087, (1989) · Zbl 0686.26003
[5] Kominek, Z., On additive and convex functionals, Radovi mat., 3, 267-279, (1987) · Zbl 0643.39006
[6] Kominek, Z., On a problem of K. nikodem, Arch. math. (basel), 50, 3, 287-288, (1988) · Zbl 0642.39005
[7] Kominek, Z., On some property of J-convex functions, Radovi mat., 3, 143-147, (1987) · Zbl 0632.26005
[8] Kominek, Z.; Kuczma, M., p-convex functions in linear spaces, Ann. polon. math., 53, 2, (1991) · Zbl 0778.46013
[9] König, H., On the abstract Hahn-Banach theorem due to rodé, Aequationes math., 34, 89-95, (1987) · Zbl 0636.46005
[10] Kuczma, M., An introduction to the theory of functional equations and inequalities, (1985), Polish Scientific Publishers/Silesian University Press Warsaw, Krakow, Katowice
[11] Kuczma, M., On a result of Z. kominek, Radovi mat., 3, 307-315, (1987) · Zbl 0652.39014
[12] Kuhn, N., A note on t-convex functions, General inequalities, 4, 269-276, (1984)
[13] Lajkó, K., On a functional equation of alsina and garcia-roig, Publ. mat., 52, 3-4, 507-515, (1998) · Zbl 0912.39010
[14] Maksa, Gy.; Nikodem, K.; Páles, Zs., Result on t-wright convexity, C. R. math. rep. acad. sci. Canada, 13, 274-278, (1991) · Zbl 0749.26007
[15] Maksa, Gy.; Páles, Zs., Decomposition of higher order wright convex functions, J. math. anal. appl., 359, 438-443, (2009) · Zbl 1175.26027
[16] Matkowski, J., On a-wright convexity and the converse of minkowkiʼs inequality, Aequationes math., 43, 106-112, (1992) · Zbl 0758.26008
[17] Matkowski, J.; Wróbel, M., A generalized α-wright convexity and related functional equation, Ann. math. sil., 10, 7-12, (1996) · Zbl 0859.39016
[18] Ng, C.T., Functions generating Schur-convex sums, (), 433-438 · Zbl 0634.39014
[19] Ng, C.T., On midconvex functions majorized by midpoint concave bounds, Proc. amer. math. soc., 102, 3, 538-540, (1988) · Zbl 0659.39004
[20] Nikodem, K., Midpoint convex functions majorized by midpoint concave functions, Aequationes math., 32, 10, 45-51, (1987) · Zbl 0612.26007
[21] Nikodem, K., On some class of midconvex functions, Ann. polon. math., 50, 145-151, (1989) · Zbl 0706.39004
[22] Nikodem, K., On the support of midconvex operators, Aequationes math., 42, 182-189, (1991) · Zbl 0747.39006
[23] Nikodem, K.; Páles, Zs., On approximately Jensen-convex and wright-convex functions, C. R. math. rep. acad. sci. Canada, 23, 4, 141-147, (2001) · Zbl 1007.39025
[24] Olbryś, A., A characterization of \((t_1, \ldots, t_n)\)-wright affine functions, Comment. math., XLVII, 1, 47-56, (2007) · Zbl 1172.39301
[25] Olbryś, A., On the measurability and the Baire property of t-wright convex functions, Aequationes math., 68, 28-37, (2004) · Zbl 1067.26009
[26] Olbryś, A., A support theorem for t-wright convex functions, Math. inequal. appl., 14, 2, 399-412, (2011) · Zbl 1218.39018
[27] Olbryś, A., Some conditions implying the continuity of t-wright convex functions, Publ. math. debrecen, 68, 3-4, 401-418, (2006) · Zbl 1109.26002
[28] Pãles, Zs.; Daróczy, Z., Convexity with given infinite weight sequences, Stochastica, 11, 1, 5-12, (1987) · Zbl 0659.39006
[29] Roberts, A.W.; Varberg, D.E., Convex functions, (1973), Academic Press New York, London · Zbl 0289.26012
[30] Rodé, G., Eine abstrakte version des satzes von Hahn-Banach, Arch. math., 31, (1978) · Zbl 0402.46003
[31] Wright, E.M., An inequality for convex functions, Amer. math. monthly, 61, 620-622, (1954) · Zbl 0057.04801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.