×

zbMATH — the first resource for mathematics

Curved-space magnetic monopoles. (English) Zbl 1232.81036
Summary: Explicit solutions of the coupled Einstein-Yang-Mills-Higgs field equations representing a ’t Hooft-Polyakov-type magnetic monopole are constructed, both in and away from the Bogomol’nyń≠-Prasad-Sommerfield limit. The solutions are seen to tend towards black-hole solutions as the strength of the gravitational coupling is increased, as might be expected. A careful analysis of solutions near the transition to a black hole shows that the monopole loses its nonabelian hair as it develops a horizon. In certain cases, solutions without a horizon are seen to be unstable to gravitational collapse.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. W. Hawking, Commun. Math. Phys. 25 pp 152– (1972)
[2] W. Israel, Commun. Math. Phys. 8 pp 245– (1968)
[3] J. D. Bekenstein, Phys. Rev. D 5 pp 1239– (1972)
[4] C. Teitelboim, Phys. Rev. D 5 pp 2941– (1972)
[5] J. B. Hartle, Phys. Rev. D 3 pp 2938– (1971)
[6] P. B. Yasskin, Phys. Rev. D 12 pp 2212– (1975)
[7] R. Bartnik, Phys. Rev. Lett. 61 pp 141– (1988)
[8] H. P. Kunzle, J. Math. Phys. 31 pp 928– (1990) · Zbl 0701.53091
[9] P. Bizon, Phys. Rev. Lett. 64 pp 2844– (1990) · Zbl 1050.83506
[10] M. S. Volkov, Pis’ma Zh. Eksp. Teor. Fiz. 50 pp 312– (1989)
[11] A. M. Polyakov, JETP Lett. 20 pp 194– (1974)
[12] G. ’t Hooft, Nucl. Phys. B79 pp 276– (1974)
[13] P. Goddard, Rep. Prog. Phys. 41 pp 1357– (1978)
[14] P. van Nieuwenhuizen, Phys. Rev. D 13 pp 778– (1976)
[15] G. W. Gibbons, in: Proceedings of the XII Autumn School on The Physical Universe, Lisbon, 1990 (1991)
[16] F. A. Bais, Phys. Rev. D 11 pp 2692– (1975)
[17] Y. M. Cho, Phys. Rev. D 12 pp 1588– (1975)
[18] E. B. Bogomol’nyi, Sov. J. Nucl. Phys. 24 pp 449– (1976)
[19] M. K. Prasad, Phys. Rev. Lett. 35 pp 760– (1975)
[20] C. Lanczos, in: Applied Analysis (1956)
[21] E. L. Ortiz, SIAM J. Numer. Anal. 6 pp 480– (1969) · Zbl 0195.45701
[22] K. Lee, Phys. Rev. D 45 pp 2751– (1992) · Zbl 1232.81033
[23] , Phys. Rev. Lett. 68 pp 1100– (1992) · Zbl 0969.83516
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.