zbMATH — the first resource for mathematics

Global existence of solutions to a coupled parabolic-hyperbolic system with moving boundary. (English) Zbl 1232.35197
The authors prove the existence of a unique smooth global solution to the system of parabolic-hyperbolic equations which arises in a cell motility study. The parabolicity of one of the governing equations is a consequence of a priori bounds which also exclude the formation of shock in the hyperbolic equation and enable us to control the moving boundaries.

35R37 Moving boundary problems for PDEs
35M30 Mixed-type systems of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI
[1] Fabiana Cardetti and Yung-Sze Choi, A parabolic-hyperbolic system modelling a moving cell, Electron. J. Differential Equations (2009), No. 95, 11. · Zbl 1178.35389
[2] Y. S. Choi, Patrick Groulx, and Roger Lui, Moving boundary problem for a one-dimensional crawling nematode sperm cell model, Nonlinear Anal. Real World Appl. 6 (2005), no. 5, 874 – 898. · Zbl 1078.35125 · doi:10.1016/j.nonrwa.2004.11.005 · doi.org
[3] Y. S. Choi, Juliet Lee, and Roger Lui, Traveling wave solutions for a one-dimensional crawling nematode sperm cell model, J. Math. Biol. 49 (2004), no. 3, 310 – 328. · Zbl 1063.92005 · doi:10.1007/s00285-003-0255-1 · doi.org
[4] Y. S. Choi and Roger Lui, Linearized stability of traveling cell solutions arising from a moving boundary problem, Proc. Amer. Math. Soc. 135 (2007), no. 3, 743 – 753. · Zbl 1111.35130
[5] Y. S. Choi and Roger Lui, Existence of traveling domain solutions for a two-dimensional moving boundary problem, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4027 – 4044. · Zbl 1167.35053
[6] Линейные и квазилинейные уравнения параболического типа, Издат. ”Наука”, Мосцощ, 1967 (Руссиан). О. А. Ладыžенскаја, В. А. Солонников, анд Н. Н. Урал\(^{\приме}\)цева, Линеар анд чуасилинеар ечуатионс оф параболиц тыпе, Транслатед фром тхе Руссиан бы С. Смитх. Транслатионс оф Матхематицал Монограпхс, Вол. 23, Америцан Матхематицал Социеты, Провиденце, Р.И., 1968 (Руссиан).
[7] Alex Mogilner, Mathematics of cell motility: have we got its number?, J. Math. Biol. 58 (2009), no. 1-2, 105 – 134. · Zbl 1161.92022 · doi:10.1007/s00285-008-0182-2 · doi.org
[8] A. Mogilner and D.W.Verzi, A simple 1-D physical model for the crawling nematode sperm cell, J. Stat. Phys. 110 (2003), 1169-1189. · Zbl 1012.92008
[9] T.D. Pollard and G.G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments, Cell, 112 (2003), 453-465.
[10] Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. · Zbl 0549.35002
[11] S.M. Rafelski and J.A. Theriot, Crawling toward a unified model of cell mobility: Spatial and temporal regulation of actin dynamics, Annual Rev. Biochem. 73 (2004), 209-39.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.