×

zbMATH — the first resource for mathematics

The perturbed compound Poisson risk process with investment and debit interest. (English) Zbl 1231.91255
Summary: In this paper, we study absolute ruin questions for the perturbed compound Poisson risk process with investment and debit interests by the expected discounted penalty function at absolute ruin, which provides a unified means of studying the joint distribution of the absolute ruin time, the surplus immediately prior to absolute ruin time and the deficit at absolute ruin time. We first consider the stochastic Dirichlet problem and from which we derive a system of integro-differential equations and the boundary conditions satisfied by the function. Second, we derive the integral equations and a defective renewal equation under some special cases, then based on the defective renewal equation we give two asymptotic results for the expected discounted penalty function when the initial surplus tends to infinity for the light-tailed claims and heavy-tailed claims, respectively. Finally, we investigate some explicit solutions and numerical results when claim sizes are exponentially distributed.

MSC:
91B30 Risk theory, insurance (MSC2010)
60K05 Renewal theory
91B70 Stochastic models in economics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. US Government Pronting Office, Washington, DC · Zbl 0543.33001
[2] Asmussen S (2000) Ruin probabilities. World Scientific, Singapore · Zbl 0986.62086
[3] Cai J (2004) Ruin probabilities and penalty functions with stochastic rates of interest. Stoch Process Appl 112:53–78 · Zbl 1070.60043 · doi:10.1016/j.spa.2004.01.007
[4] Cai J, Yang HL (2005) Ruin in the perturbed compound Poission risk process under interest force. Adv Appl Probab 37:819–835 · Zbl 1074.60090 · doi:10.1239/aap/1127483749
[5] Cai J (2007) On the time value of absolute ruin with debit interest. Adv Appl Probab 39:343–359 · Zbl 1141.91023 · doi:10.1239/aap/1183667614
[6] Cai J, Dickson DCM (2002) On the expected discounted penalty function at ruin of a surplus process with interest. Insur: Math Econ 30:389–404 · Zbl 1074.91027 · doi:10.1016/S0167-6687(02)00120-8
[7] Cai JJ, Feng RH, Willmot GE (2007) The compound Poisson surplus model with interest and liquid reserves: analysis of the Gerber–Shiu discounted penalty function. Methodol Comput Appl Probab. doi: 10.1007/s11009-007-9050-6 · Zbl 1170.91407
[8] Chiu SN, Yin CC (2003) The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion. Insur: Math Econ 33:59–66 · Zbl 1055.91042 · doi:10.1016/S0167-6687(03)00143-4
[9] Dassios A, Embrechts P (1989) Martingales and insurance risk. Stoch Models 5:181–217 · Zbl 0676.62083 · doi:10.1080/15326348908807105
[10] Dickson DCM, Egidio Dos Reis AD (1997) The effect of interest on negative surplus. Insur: Math Econ 21:1–16 · Zbl 0894.90045 · doi:10.1016/S0167-6687(97)00014-0
[11] Embrechts P, Schmidli H (1994) Ruin estimation for a general insurance model. Adv Appl Probab 26:404–422 · Zbl 0811.62096 · doi:10.2307/1427443
[12] Gerber HU (1971) Der Einfluss von Zins auf die Ruinwahrscheinlichkeit. Bull Wiss Assoc Actuar 71:63–70 · Zbl 0217.26804
[13] Gerber HU, Shiu ESW (1998) On the time value of ruin. N Am Actuar J 2:48–78 · Zbl 1081.60550
[14] Gerber HU, Yang HL (2007) Absolute ruin probabilities in a jump diffusion risk model with investment. N Am Actuar J 11:159–169
[15] Klüppelberg C (1988) On subexponential distributions and integrated tails. J Appl Probab 5:132–141 · Zbl 0651.60020 · doi:10.2307/3214240
[16] Klüppelberg C (1989) Subexponential distributions and characterizations of related classes. Probab Theory Relat Fields 82:259–269 · Zbl 0687.60017 · doi:10.1007/BF00354763
[17] Paulsen J (1989) Ruin theory with compounding assets–a survey. Insur: Math Econ 22:3–16 · Zbl 0909.90115 · doi:10.1016/S0167-6687(98)00009-2
[18] Slater, LJ (1960) Confluent hypergeometric functions. Cambridge University Press, Cambridge · Zbl 0086.27502
[19] Song M, Wu R (2007) Total duration of negative surplus for the risk process with constant interest force. Stoch Anal Appl 25:1263–1272 · Zbl 1295.91056 · doi:10.1080/07362990701568213
[20] Sundt B, Teugels JL (1995) Ruin estimates under interest force. Insur: Math Econ 16:7–22 · Zbl 0838.62098 · doi:10.1016/0167-6687(94)00023-8
[21] Wang GJ, Wu R (2001) Distributions for the risk process with a stochastic return on investments. Stoch Process Appl 95:329–341 · Zbl 1064.91051 · doi:10.1016/S0304-4149(01)00102-8
[22] Zhang CS, Wu R (2001) On the distribution the surplus of the D-E model prior to and at ruin. Insur: Math Econ 24:309–321 · Zbl 0963.91063 · doi:10.1016/S0167-6687(99)00005-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.