zbMATH — the first resource for mathematics

From the Hu-Washizu formulation to the average nodal strain formulation. (English) Zbl 1231.74424
Summary: We present a stabilized finite element method for the Hu-Washizu formulation of linear elasticity based on simplicial meshes leading to the stabilized nodal strain formulation or node-based uniform strain elements. We show that the finite element approximation converges uniformly to the exact solution for the nearly incompressible case.

74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
74G65 Energy minimization in equilibrium problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI
[1] D.N. Arnold, F. Brezzi, Some new elements for the Reissner-Mindlin plate model, in: Boundary Value Problems for Partial Differential Equations and Applications, Masson, Paris, 1993, pp. 287-292. · Zbl 0817.73058
[2] Bochev, P.B.; Dohrmann, C.R., A computational study of stabilized, low order \(C^0\) finite element approximations of Darcy equations, Comput. mech., 38, 323-333, (2006) · Zbl 1177.76191
[3] Boffi, D.; Lovadina, C., Analysis of new augmented Lagrangian formulations for mixed finite element schemes, Numer. math., 75, 405-419, (1997) · Zbl 0874.65085
[4] Bonet, J.; Burton, A.J., A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications, Commun. numer. methods engrg., 14, 437-449, (1998) · Zbl 0906.73060
[5] Bonet, J.; Marriott, H.; Hassan, O., Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications, Int. J. numer. methods engrg., 50, 119-133, (2001) · Zbl 1082.74547
[6] Braess, D., Finite elements. theory, fast solver, and applications in solid mechanics, (2001), Cambridge University Press
[7] Braess, D., Finite elements. theory, fast solver, and applications in solid mechanics, (2007), Cambridge University Press
[8] Braess, D.; Carstensen, C.; Reddy, B.D., Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numer. math., 96, 461-479, (2004) · Zbl 1050.65097
[9] Brenner, S.C.; Sung, L., Linear finite element methods for planar linear elasticity, Math. comput., 59, 321-338, (1992) · Zbl 0766.73060
[10] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer-Verlag New York · Zbl 0788.73002
[11] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North Holland Amsterdam · Zbl 0445.73043
[12] de Souza Neto, E.A.; Andrade Pires, F.M.; Owen, D.R.J., F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. part I: formulation and benchmarking, Int. J. numer. methods engrg., 62, 353-383, (2005) · Zbl 1179.74159
[13] Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.; Witkowski, W.R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes, Int. J. numer. methods engrg., 47, 1549-1568, (2000) · Zbl 0989.74067
[14] Ewing, R.E.; Lin, T.; Lin, Y., On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. numer. anal., 39, 1865-1888, (2002) · Zbl 1036.65084
[15] Girault, V.; Raviart, P.-A., Finite element methods for navier – stokes equations, (1986), Springer-Verlag Berlin · Zbl 0413.65081
[16] Hu, H., On some variational principles in the theory of elasticity and the theory of plasticity, Sci. sinica, 4, 33-54, (1955) · Zbl 0066.17903
[17] Kozlov, V.A.; Maz’ya, V.G.; Rossmann, J., Spectral problems associated with corner singularities of solutions to elliptic equations, Mathematical surveys and monographs, vol. 85, (2001), American Mathematical Society Providence, RI · Zbl 0965.35003
[18] Lamichhane, B.P., Inf – sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity, IMA journal of numerical analysis, 29, 404-420, (2009) · Zbl 1160.74046
[19] Lamichhane, B.P.; Reddy, B.D.; Wohlmuth, B.I., Convergence in the incompressible limit of finite element approximations based on the hu – washizu formulation, Numer. math., 104, 151-175, (2006) · Zbl 1175.74083
[20] Masud, A.; Hughes, T.J.R., A stabilized mixed finite element method for Darcy flow, Comput. methods appl. mech. engrg., 191, 4341-4370, (2002) · Zbl 1015.76047
[21] Andrade Pires, F.M.; de Souza Neto, E.A.; de la Cuesta Padilla, J.L., An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains, Commun. numer. methods engrg., 20, 569-583, (2004) · Zbl 1302.74173
[22] Puso, M.A.; Solberg, J., A stabilized nodally integrated tetrahedral, Int. J. numer. methods engrg., 67, 841-867, (2006) · Zbl 1113.74075
[23] Washizu, K., Variational methods in elasticity and plasticity, (1982), Pergamon Press · Zbl 0164.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.