zbMATH — the first resource for mathematics

A new modification of false position method based on homotopy analysis method. (English) Zbl 1231.65084
Summary: A new modification of false position method for solving nonlinear equations is presented by applying homotopy analysis method (HAM). Some numerical illustrations are given to show the efficiency of algorithm.

65H05 Numerical computation of solutions to single equations
65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations
Full Text: DOI
[1] Burden R L, Faires J D. Numerical analysis[M]. 7th Edition, Brooks/Cole, 2000.
[2] Wu T M. A modified formula of ancient Chinese algorithm by the homotopy continuation technique[J]. Appl Math Comput, 2005, 165:31–35. · Zbl 1070.65035 · doi:10.1016/j.amc.2004.04.114
[3] Liao S J. The proposed homotopy analysis technique for the solution of nonlinear problems[D]. Ph D Dissertation. Shanghai Jiaotong University, 1992.
[4] Liao S J. An approximate solution technique which does not depend upon small parameters: a special example[J]. International Journal of Non-linear Mechanics, 1995, 30:371–380. · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[5] Liao S J. An approximate solution technique which does not depend upon small parameters (part 2): an application in fluid mechanics[J]. International Journal of Non-linear Mechanics, 1997, 32(5):815–822. · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1
[6] Liao S J. An explicit, totally analytic approximation of Blasius viscous flow problems[J]. International Journal of Non-linear Mechanics, 1999, 34(4):759–778. · Zbl 1342.74180 · doi:10.1016/S0020-7462(98)00056-0
[7] Liao S J. Beyond perturbation: introduction to the homotopy analysis method[M]. Boca Raton: Chapman & Hall/CRC Press, 2003.
[8] Liao S J. On the homotopy anaylsis method for nonlinear problems[J]. Appl Math Comput, 2004, 147:499–513. · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[9] Liao S J. Comparison between the homotopy analysis method and homotopy perturbation method[J]. Appl Math Comput, 2005, 169:1186–1194. · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[10] Ayub M, Rasheed A, Hayat T. Exact flow of a third grade fluid past a porous plate using homotopy analysis method[J]. Int J Eng Sci, 2003, 41:2091–2103. · Zbl 1211.76076 · doi:10.1016/S0020-7225(03)00207-6
[11] Hayat T, Khan M, Ayub M. On the explicit analytic solutions of an Oldroyd 6-constant fluid[J]. Int J Eng Sci, 2004, 42:123–135. · Zbl 1211.76009 · doi:10.1016/S0020-7225(03)00281-7
[12] Liao S J. A new branch of solutions of boundary-layer flows over an impermeable stretched plate[J]. Int J Heat Mass Transfer, 2005, 48:2529–2539. · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[13] Liao S J, Pop I. Explicit analytic solution for similarity boundary layer equations[J]. Int J Heat Mass Transfer, 2004, 47:75–78. · Zbl 1045.76008 · doi:10.1016/S0017-9310(03)00405-8
[14] Abbasbandy S. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method[J]. Appl Math Comput, 2003, 145:887–893. · Zbl 1032.65048 · doi:10.1016/S0096-3003(03)00282-0
[15] Abbasbandy S. Modified homotopy perturbation method for nonlinear equations and comparison with Adomian decomposition method[J]. Appl Math Comput, 2006, 172:431–438. · Zbl 1088.65043 · doi:10.1016/j.amc.2005.02.015
[16] Liao S J. An explicit analytic solution to the Thomas-Fermi equation[J]. Appl Math Comput, 2003, 144:433–444. · Zbl 1034.34005 · doi:10.1016/S0096-3003(02)00423-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.