×

A Ciesielski-Taylor type identity for positive self-similar Markov processes. (English. French summary) Zbl 1231.60031

Let \(Q^{(\nu)}\) be the law of the \(\nu\)-dimensional Bessel process starting at \(0\), where \(\nu>0\). Given a stochastic process \(\{X_t: t\geq 0\}\) and \(a>0\), let \(T_a=\inf\{s\geq 0: X_s=a\}\) and \(L_a=\int_{0}^{\infty} 1_{X_s\leq a}\,ds\). The Ciesielski-Taylor identity states that the law of \(T_a\) under \(Q^{(\nu)}\) is the same as the law of \(L_a\) under \(Q^{(\nu+2)}\). The aim of this paper is to provide a general version of the Ciesielski-Taylor identity for positive self-similar Markov processes of the spectrally negative type. The main result includes many previously known identities of the Ciesielski-Taylor type. Let \(\xi=\{\xi_t: t\geq 0\}\) be a spectrally negative Lévy process (with or without killing) with Laplace exponent \(\psi(u)=\log \operatorname{E} e^{u\xi_1}\). The authors show that \(\mathcal T_\beta\psi(u)=\frac{u}{u+\beta} \psi(u+\beta)\) is a Laplace exponent of another spectrally negative Lévy process for every \(\beta>0\). For a Lévy process \(\xi\) with Laplace exponent \(\psi\), denote by \(P_{\psi}\) the law of the positive self-similar Markov process starting at \(0\) which corresponds to \(\xi\) via the Lamperti transformation. The main result of the paper states that the law of \(T_a\) under \(P_{\psi}\) coincides with the law of \(L_a\) under \(P_{\mathcal T_{\alpha} \psi}\) for every \(\alpha>0\) such that \(\psi(\alpha)>0\). Moreover, the authors show that both random variables are self-decomposable and provide an explicit formula for their Laplace transform.

MSC:

60G18 Self-similar stochastic processes
60G51 Processes with independent increments; Lévy processes
60G52 Stable stochastic processes
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML

References:

[1] J. Bertoin. An extension of Pitman’s theorem for spectrally positive Lévy processes. Ann. Probab. 20 (1992) 1464-1483. · Zbl 0760.60068
[2] J. Bertoin. Lévy Processes . Cambridge Univ. Press, Cambridge, 1996. · Zbl 0861.60003
[3] J. Bertoin and M. Yor. The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 (2002) 389-400. · Zbl 1004.60046
[4] P. Biane. Comparaison entre temps d’atteinte et temps de séjour de certaines diffusions réelles. In Séminaire de probabilités, XIX, 1983/84 291-296. Lecture Notes in Math. 1123 . Springer, Berlin, 1985. · Zbl 0562.60085
[5] M. E. Caballero and L. Chaumont. Conditioned stable Lévy processes and the Lamperti representation. J. Appl. Probab. 43 (2006) 967-983. · Zbl 1133.60316
[6] M. E. Caballero and L. Chaumont. Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34 (2006) 1012-1034. · Zbl 1098.60038
[7] Ph. Carmona, F. Petit and M. Yor. Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana 14 (1998) 311-368. · Zbl 0919.60074
[8] T. Chan, A. E. Kyprianou and M. Savov. Smoothness of scale functions for spectrally negative Lévy processes. Probab. Theory and Related fields (2010). · Zbl 1259.60050
[9] L. Chaumont, A. E. Kyprianou and J. C. Pardo. Some explicit identities associated with positive self-similar Markov processes. Stochastic Process. Appl. 119 (2009) 980-1000. · Zbl 1170.60017
[10] Z. Ciesielski and S. J. Taylor. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962) 434-450. · Zbl 0121.13003
[11] P. J. Fitzsimmons. On the existence of recurrent extension of positive self-similar Markov processes. Electron. Comm. Probab. 11 (2006) 230-241. · Zbl 1110.60036
[12] R. K. Getoor and M. J. Sharpe. Excursions of Brownian motion and Bessel processes. Z. Wahrsch. Verw. Gebiete 47 (1979) 83-106. · Zbl 0399.60074
[13] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications . Springer, Berlin, 2006. · Zbl 1104.60001
[14] A. E. Kyprianou and Z. Palmowski. A martingale review of some fluctuation theory for spectrally negative Lévy processes. In Séminaire de Probabilités XXXVIII 16-29. Lecture Notes in Math. 1857 . Springer, Berlin, 2005. · Zbl 1063.60071
[15] J. Lamperti. Semi-stable Markov processes. I. Z. Wahrsch. Verw. Gebiete 22 (1972) 205-225. · Zbl 0274.60052
[16] N. N. Lebedev. Special Functions and Their Applications . Dover Publications, New York, 1972. · Zbl 0271.33001
[17] P. Patie. Exponential functional of one-sided Lévy processes and self-similar continuous state branching processes with immigration. Bull. Sci. Math. 133 (2009) 355-382. · Zbl 1171.60009
[18] P. Patie. Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes. Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 667-684. · Zbl 1180.31010
[19] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44 . Springer, New York, 1983. · Zbl 0516.47023
[20] V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér’s condition. Bernoulli 11 (2005) 471-509. · Zbl 1077.60055
[21] M. Yor. Une explication du théorème de Ciesielski-Taylor. Ann. Inst. H. Poincaré Probab. Statist. 27 (1991) 201-213. · Zbl 0743.60080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.