×

zbMATH — the first resource for mathematics

Fixed points of Geraghty-type mappings in various generalized metric spaces. (English) Zbl 1231.54030
Summary: Fixed point theorems for mappings satisfying Geraghty-type contractive conditions are proved in the frame of partial metric spaces, ordered partial metric spaces, and metric-type spaces. Examples are given showing that these results are proper extensions of the existing ones.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Geraghty, “On contractive mappings,” Proceedings of the American Mathematical Society, vol. 40, pp. 604-608, 1973. · Zbl 0245.54027 · doi:10.2307/2039421
[2] A. Amini-Harandi and H. Emami, “A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 5, pp. 2238-2242, 2010. · Zbl 1197.54054 · doi:10.1016/j.na.2009.10.023
[3] J. Caballero, J. Harjani, and K. Sadarangani, “Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations,” Fixed Point Theory and Applications, Article ID 916064, 14 pages, 2010. · Zbl 1194.54057 · doi:10.1155/2010/916064 · eudml:224924
[4] A. Amini-Harandi and M. Fakhar, “Fixed point theory in cone metric spaces obtained via the scalarization method,” Computers & Mathematics with Applications, vol. 59, no. 11, pp. 3529-3534, 2010. · Zbl 1197.54055 · doi:10.1016/j.camwa.2010.03.046
[5] S. G. Matthews, “Partial metric topology,” Annals of the New York Academy of Sciences, vol. 728, pp. 183-197, 1994. · Zbl 0911.54025 · doi:10.1111/j.1749-6632.1994.tb44144.x
[6] S. Oltra and O. Valero, “Banach’s fixed point theorem for partial metric spaces,” Rendiconti dell’Istituto di Matematica dell’Università di Trieste, vol. 36, no. 1-2, pp. 17-26, 2004. · Zbl 1080.54030
[7] D. Ilić, V. Pavlović, and V. Rako, “Some new extensions of Banach’s contraction principle to partial metric space,” Applied Mathematics Letters, vol. 24, no. 8, pp. 1326-1330, 2011. · Zbl 1292.54025 · doi:10.1016/j.aml.2011.02.025
[8] I. Altun and A. Erduran, “Fixed point theorems for monotone mappings on partial metric spaces,” Fixed Point Theory and Applications, Article ID 508730, 10 pages, 2011. · Zbl 1207.54051 · doi:10.1155/2011/508730 · eudml:233067
[9] B. Samet, M. Rajović, R. Lazović, and R. Stoiljković, “Common fixed point results for nonlinear contractions in ordered partial metric spaces,” Fixed Point Theory and Applications, vol. 2011:71, 2011. · Zbl 1271.54086 · doi:10.1186/1687-1812-2011-71
[10] L. G. Huang and X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings,” Journal of Mathematical Analysis and Applications, vol. 332, no. 2, pp. 1468-1476, 2007. · Zbl 1118.54022 · doi:10.1016/j.jmaa.2005.03.087
[11] M. A. Khamsi, “Remarks on cone metric spaces and fixed point theorems of contractive mappings,” Fixed Point Theory and Applications, Article ID 315398, 7 pages, 2010. · Zbl 1194.54065 · doi:10.1155/2010/315398 · eudml:232089
[12] M. Jovanović, Z. Kadelburg, and S. Radenović, “Common fixed point results in metric-type spaces,” Fixed Point Theory and Applications, Article ID 978121, 15 pages, 2010. · Zbl 1207.54058 · doi:10.1155/2010/978121 · eudml:230838
[13] S. Czerwik, “Contraction mappings in b-metric spaces,” Acta Mathematica et Informatica Universitatis Ostraviensis, vol. 1, pp. 5-11, 1993. · Zbl 0849.54036 · eudml:23748
[14] R. Heckmann, “Approximation of metric spaces by partial metric spaces,” Applied Categorical Structures, vol. 7, no. 1-2, pp. 71-83, 1999. · Zbl 0993.54029 · doi:10.1023/A:1008684018933
[15] M. H. Escardo, “PCF extended with real numbers,” Theoretical Computer Science, vol. 162, no. 1, pp. 79-115, 1996. · Zbl 0871.68034 · doi:10.1016/0304-3975(95)00250-2
[16] S. Radenović, Z. Kadelburg, D. Jandrlić, and A. Jandrlić, “Some results on weak contraction maps,” Bulletin of the Iranian Mathematical Society. In press. · Zbl 1391.54036
[17] G. S. Jeong and B. E. Rhoades, “Maps for which F(T)=F(Tn),” Fixed Point Theory and Applications, vol. 6, pp. 87-131, 2005.
[18] J. Jachymski, “Equivalent conditions for generalized contractions on (ordered) metric spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 3, pp. 768-774, 2011. · Zbl 1201.54034 · doi:10.1016/j.na.2010.09.025
[19] S. Romaguera, “Fixed point theorems for generalized contractions on partial metric spaces,” Topology and its Applications, vol. 159, no. 1, pp. 194-199, 2012. · Zbl 1232.54039 · doi:10.1016/j.topol.2011.08.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.