×

zbMATH — the first resource for mathematics

The orbifold cohomology ring of simplicial toric stack bundles. (English) Zbl 1231.14002
Summary: We introduce a new quotient construction of toric Deligne-Mumford stacks. We use this new construction to define toric stack bundles which generalize the construction of toric bundles by P. Sankaran and V. Uma [Comment. Math. Helv. 78, No. 3, 540–554 (2003; Zbl 1050.14047); errata ibid. 79, 840–841 (2004)]. The orbifold Chow ring of such toric stack bundles is computed. We show that the orbifold Chow ring of the toric stack bundle and the Chow ring of its crepant resolution are fibres of a flat family, generalizing a result of Borisov-Chen-Smith.

MSC:
14A20 Generalizations (algebraic spaces, stacks)
14F40 de Rham cohomology and algebraic geometry
PDF BibTeX XML Cite
Full Text: Euclid arXiv
References:
[1] D. Abramovich, T. Graber and A. Vistoli, Algebraic orbifold quantum product , Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 1–24. · Zbl 1067.14055
[2] E. Andreini, Y. Jiang and H. Tseng, The Kunneth type formula for orbifold Gromov–Witten invariants ,
[3] L. Borisov, L. Chen and G. Smith, The orbifold Chow ring of toric Deligne–Mumford stacks , J. Amer. Math. Soc. 18 (2005), 193–215, math.AG/0309229. · Zbl 1178.14057
[4] W. Chen and Y. Ruan, A new cohomology theory for orbifolds , Comm. Math. Phys. 248 (2004), 1–31, math.AG/0004129. · Zbl 1063.53091
[5] W. Chen and Y. Ruan, Orbifold Gromov–Witten theory , Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc. Providence, RI, 2002, pp. 25–85. · Zbl 1091.53058
[6] D. Cox, The homogeneous coordinate ring of a toric variety , J. Algebraic Geom. 4 (1995), 17–50. · Zbl 0846.14032
[7] R. Donagi and T. Pantev, Torus fibrations, gerbes and duality , math.AG /0306213. · Zbl 1140.14001
[8] D. Edidin, Notes on the construction of the moduli space of curves , Recent progress in intersection theory (Bologna, 1997), Birkhauser, Boston, 2000, pp. 85–113. · Zbl 0990.14008
[9] W. Fulton, Introduction to toric varieties , Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. · Zbl 0813.14039
[10] Y. Jiang, The Chen–Ruan cohomology of weighted projective spaces , Canad. J. Math. 59 (2007), 981–1007. · Zbl 1188.14035
[11] Y. Jiang, A note on finite Abelian gerbes over toric Deligne–Mumford stacks , Proc. Amer. Math. Soc. 136 (2008), 4151–4156. · Zbl 1165.14007
[12] S. Lang, Algebra , Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002.
[13] S. Keel and S. Mori, Quotients by groupoids , Ann. of Math. (2) 145 (1997), 193–213. JSTOR: · Zbl 0881.14018
[14] T. Oda, Convex bodies and algebraic geometry , Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 15, Springer-Verlag, Berlin, 1988. · Zbl 0628.52002
[15] F. Perroni, Orbifold cohomology of ADE-singularities , Internat. J. Math. 18 (2007), 1009–1059. · Zbl 1149.14010
[16] M. Poddar, Orbifold Hodge numbers of Calabi–Yau hypersurfaces , Pacific J. Math. 208 (2003), 151–167. · Zbl 1052.32018
[17] Y. Ruan, Cohomology ring of crepant resolutions of orbifolds , Gromov–Witten theory of spin curves and orbifolds, Contemp. Math., vol. 403, Amer. Math. Soc., Providence, RI, 2006, pp. 117–126. · Zbl 1105.14078
[18] P. Sankaran and V. Uma, Cohomology of toric bundles , Comment. Math. Helv. 78 (2003), 540–554.% · Zbl 1050.14047
[19] A. Vistoli., Intersection theory on algebraic stacks and on their moduli spaces , Invent. Math. 97 (1989), 613–670. · Zbl 0694.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.