×

zbMATH — the first resource for mathematics

Computational modeling of electrochemical coupling: a novel finite element approach towards ionic models for cardiac electrophysiology. (English) Zbl 1230.92013
Summary: We propose a novel, efficient finite element solution technique to simulate the electrochemical response of excitable cardiac tissue. We apply a global-local split in which the membrane potential of the electrical problem is introduced globally as a nodal degree of freedom, while the state variables of the chemical problem are treated locally as internal variables on the integration point level. This particular discretization is efficient and highly modular since different cardiac cell models can be incorporated in a straightforward way through only minor local modifications on the constitutive level. We derive the underlying algorithmic framework for a recently proposed ionic model of human ventricular cardiomyocytes, and demonstrate its integration into an existing nonlinear finite element infrastructure. To ensure unconditional algorithmic stability, we apply an implicit backward Euler scheme to discretize the evolution equations for both the electrical potential and the chemical state variables in time. To increase robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme and illustrate the consistent linearization of the weak form of the excitation problem. This particular solution strategy allows us to apply an adaptive time stepping scheme, which automatically generates small time steps during the rapid upstroke, and large time steps during the plateau, the repolarization, and the resting phases. We demonstrate that solving an entire cardiac cycle for a real patient-specific geometry characterized through a transmembrane potential, four ion concentrations, thirteen gating variables, and fifteen ionic currents requires computation times of less than ten minutes on a standard desktop computer.

MSC:
92C30 Physiology (general)
92C05 Biophysics
78A57 Electrochemistry
35K57 Reaction-diffusion equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
92-08 Computational methods for problems pertaining to biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Software:
FEAP; LBIE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] O.J. Abilez, J. Wong, R. Prakash, K. Deisseroth, C.K. Zarins, E. Kuhl, Multiscale computational models for optogenetic control of cardiac function, Biophys. J. 101 (2011), in press.
[2] American Heart Association, Heart Disease and Stroke Statistics - 2010 Update, Dallas,Texas: American Heart Association, 2010.
[3] Aliev, R.R.; Panfilov, A.V., A simple two-variable model of cardiac excitation, Chaos solitons fract., 7, 293-301, (1996)
[4] Beeler, G.W.; Reuter, H., Reconstruction of the action potential of ventricular myocardial fibers, J. physiol., 268, 177-210, (1977)
[5] Berne, R.M.; Levy, M.N., Cardiovascular physiology, The mosby monograph seri., (2001)
[6] Bernus, O.; Wilders, R.; Zemlin, C.W.; Verschelde, H.; Panfilov, A.V., A computationally efficient electrophysiological model of human ventricular cells, Am. J. physiol. heart circ. physiol., 282, H2296-H2308, (2002)
[7] Bers, M.D., Excitation-contraction coupling and cardiac contractile force, (2001), Kluver Academic Publishers
[8] Böl, M.; Reese, S.; Parker, K.K.; Kuhl, E., Computational modeling of muscular thin films for cardiac repair, Comput. mech., 43, 535-544, (2009)
[9] Boulakia, M.; Cazeau, S.; Fernandez, M.A.; Gerbeau, J.F.; Zemzemi, N., Mathematical modeling of electrocardiograms: A numerical study, Ann. biomed. engrg., 38, 1071-1097, (2010)
[10] Braunwald, E., Heart disease: A textbook of cardiovascular medicine, (1997), W.B. Saunders Co Philadelphia
[11] Brera, M.; Jerome, J.W.; Mori, Y.; Sacco, R., A conservative and monotone mixed-hybridized finite element approximation of transport problems in heterogeneous domains, Comput. methods appl. mech. engrg., 199, 2709-2720, (2010) · Zbl 1231.76138
[12] Caffrey, S.L.; Willoughby, P.J.; Pepe, P.E.; Becker, L.B., Public use of automated external defibrillators, N. engl. J. med., 347, 1242-1247, (2002)
[13] Chapelle, D.; Fernandez, M.A.; Gerbeau, J.F.; Moireau, P.; Sainte-Marie, J.; Zemzemi, N., Numerical simulation of the electromechanical activity of the heart, Lecture notes in computer science, vol. 5528, (2009), Springer-Verlag
[14] Clayton, R.H.; Panfilov, A.V., A guide to modelling cardiac electrical activity in anatomically detailed ventricles, Progr. biophys. mol. biol., 96, 19-43, (2008)
[15] M.Q. Chen, J. Wong, E. Kuhl, L.B. Giovangrandi, G.T.A. Kovacs, Characterization of electrophysiological conduction in cardiomyocyte co-cultures using co-occurrence analysis, submitted for publication.
[16] Colli Franzone, P.; Pavarino, L.F., A parallel solver for reaction-diffusion systems in computational electrocardiology, Math. mod. methods appl. sci., 14, 883-911, (2004) · Zbl 1068.92024
[17] Courtemanche, M.; Ramirez, R.J.; Nattel, S., Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, Am. J. physiol. heart circ. physiol., 275, 301-321, (1998)
[18] H. Dal, S. Göktepe, M. Kaliske, E. Kuhl, A fully implicit finite element method for bidomain models of cardiac electrophysiology, Comput. Methods Biomech. Biomed. Engrg., in press, doi:10.1080/10255842.2011.554410. · Zbl 1297.74077
[19] Ethier, M.; Bourgault, Y., Semi-implicit time-discretization schemes for the bidomain model, SIAM J. numer. anal., 46, 2443-2468, (2008) · Zbl 1182.92009
[20] DiFrancesco, D.; Noble, D., A model of cardiac electrical activity incorporating ionic pumps and concentration changes, Philos. trans. R. soc. lond. biol. sci., 307, 353-398, (1985)
[21] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membranes, Biophys. J., 1, 445-466, (1961)
[22] L. Galvani, De viribus electricitatis in motu musculari commentarius. De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii. Ex Typographia Instituti Scientiarum, Bononiae, vol VII, 1791, pp. 363-418.
[23] Ganong, W.F., Review of medical physiology, (2003), McGraw-Hill/ Appleton & Lange
[24] Göktepe, S.; Kuhl, E., Computational modeling of electrophysiology: A novel finite element approach, Int. J. numer. methods engrg., 79, 156-178, (2009) · Zbl 1171.92310
[25] Göktepe, S.; Kuhl, E., Electromechanics of the heart - A unified approach to the strongly coupled excitation-contraction problem, Comput. mech., 45, 227-243, (2010) · Zbl 1183.78031
[26] Göktepe, S.; Wong, J.; Kuhl, E., Atrial and ventricular fibrillation - computational simulation of spiral waves in cardiac tissue, Arch. appl. mech., 80, 569-580, (2010) · Zbl 1271.74319
[27] Göktepe, S.; Acharya, S.N.S.; Wong, J.; Kuhl, E., Computational modeling of passive myocardium, Int. J. numer. methods biomed. engrg., 27, 1-12, (2011) · Zbl 1207.92006
[28] Greenstein, J.L.; Winslow, R.L., An integrative model of the cardiac ventricular myocyte incorporating local control of ca^2+ release, Biophys. J., 83, 2918-2945, (2002)
[29] Hodgkin, A.L.; Huxley, A.F., A quantitative description of membrane current and its application to conductance and excitation in nerve, J. physiol., 117, 500-544, (1952)
[30] Huikuri, H.V.; Castellanos, A.; Myerburg, R.J., Medical progress: sudden death due to cardiac arrhythmias, N. engl. J. med., 345, 1473-1482, (2001)
[31] Keener, J.; Sneyd, J., Mathematical physiology, (2004), Springer Science and Business Media · Zbl 0913.92009
[32] Kotikanyadanam, M.; Göktepe, S.; Kuhl, E., Computational modeling of electrocardiograms - A finite element approach towards cardiac excitation, Int. J. numer. methods biomed. engrg., 26, 524-533, (2010) · Zbl 1187.92062
[33] Luo, C.H.; Rudy, Y., A model of the ventricular cardiac action potential. depolarization, repolarization, and their changes, Circ. res., 68, 1501-1526, (1991)
[34] Luo, C.H.; Rudy, Y., A dynamic model of the cardiac ventricular action potential. I. simulations of ionic currents and concentration changes, Circ. res., 74, 1071-1096, (1994)
[35] McAllister, R.E.; Noble, D.; Tsien, R.W., Reconstruction of the electrical activity of cardiac purkinje fibres, J. physiol., 251, 1-59, (1975)
[36] L. Mirabella, F. Nobile, A. Veneziani, An a posteriori error estimator for model adaptivity in electrocardiology, Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2010.03.009. · Zbl 1230.92026
[37] Munteanu, M.; Pavarino, L.F., Decoupled Schwarz algorithms for implicit discretizations of nonlinear monodomain and bidomain systems, Math. mod. methods appl. sci., 19, 1065-1097, (2009) · Zbl 1178.65116
[38] Murillo, M.; Cai, X.C., A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart, Numer. lin. alg. appl., 11, 261-277, (2004) · Zbl 1114.65112
[39] Nagumo, J.; Arimoto, S.; Yoshizawa, S., Active pulse transmission line simulating nerve axon, Proc. inst. radio engrg., 50, 2061-2070, (1962)
[40] Nash, M.P.; Panfilov, A.V., Electromechanical model of excitable tissue to study reentrant cardiac arrhytmias, Prog. biophys. mol. biol., 85, 501-522, (2004)
[41] Noble, D., A modification of the hodgkin – huxley equations applicable to purkinje fibre action and pacemaker potentials, J. physiol., 160, 317-352, (1962)
[42] Opie, L.H., Heart physiology: from cell to circulation, (2003), Lippincott Williams & Wilkins
[43] Plank, G.; Burton, R.A.B.; Hales, P.; Bishop, M.; Mansoori, T.; Bernabeau, M.O.; Garny, A.; Prassl, A.J.; Bollensdorff, C.; Mason, F.; Mahmood, F.; Rodriguez, B.; Grau, V.; Schneider, J.E.; Gavaghan, G.; Kohl, P., Generation of histo-anatomically representative models of the individual heart: tools and application, Philos. trans. R. soc. A - math. phys. engrg. sci., 367, 2257-2292, (2009) · Zbl 1185.92064
[44] Plonsey, R.; Barr, R.C., Bioelectricity, A quantitative approach, (2007), Springer Science and Business Media
[45] Priebe, L.; Beuckelmann, D.J., Simulation study of cellular electric properties in heart failure, Circ. res., 82, 1206-1223, (1998)
[46] Qu, Z.; Garfinkel, A., An advanced algorithm for solving partial differential equations in cardiac conduction, IEE trans. biomed. engrg., 46, 1166-1168, (1999)
[47] Rogers, J.M.; McCulloch, A.D., A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE trans. biomed. engrg., 41, 743-757, (1994)
[48] Rogers, J.M., Wave front fragmentation due to ventricular geometry in a model of the rabbit heart, Chaos, 12, 779-787, (2002)
[49] Rush, S.; Larsen, H., Practical algorithm for solving dynamic membrane equations, IEEE trans. biomed. engrg., 25, 389-392, (1978)
[50] Sachse, F.B., Computational cardiology, (2004), Springer Verlag · Zbl 1051.92025
[51] Scacchi, S., A hybrid multilevel Schwarz method for the bidomain model, Comput. methods appl. mech. engrg., 197, 4051-4061, (2008) · Zbl 1194.78048
[52] S. Scacchi, A multilevel hybrid Newton-Krylov-Schwarz method for the biodomain model of electrocardiology, Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2010.09.016. · Zbl 1225.92011
[53] Sermesant, M.; Rhode, K.; Sanchez-Ortiz, G.I.; Camara, O.; Andriantsimiavona, R.; Hegde, S.; Rueckert, D.; Lambiase, P.; Bucknall, C.; Rosenthal, E.; Delingette, H.; Hill, D.L.G.; Ayache, N.; Razavi, R., Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging, Med. im. anal., 9, 467-480, (2005)
[54] Sundnes, J.; Lines, G.T.; Tveito, A., An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Math. biosci., 194, 233-248, (2005) · Zbl 1063.92018
[55] R.L. Taylor, FEAP - A Finite Element Analysis Program, Version 8.3, User Manual, University of California at Berkeley, 2011.
[56] R.L. Taylor, S. Govindjee, FEAP - A Finite Element Analysis Program, Version 8.3, Parallel User Manual, University of California at Berkeley, 2011.
[57] Tsamis, A.; Bothe, W.; Kvitting, J.P.; Swanson, J.C.; Miller, D.C.; Kuhl, E., Active contraction of cardiac muscle: in vivo characterization of mechanical activation sequences in the beating heart, J. mech. behavior biomed. mat., 4, 1167-1176, (2011)
[58] ten Tusscher, K.H.W.J.; Noble, D.; Noble, P.J.; Panfilov, A.V., A model for human ventricular cardiomyocytes, Am. J. physiol. heart circ. physiol., 286, H1573-H1589, (2004)
[59] ten Tusscher, K.H.W.J.; Panfilov, A.V., Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Phys. med. biol., 51, 6141-6156, (2006)
[60] ten Tusscher, K.H.W.J.; Bernus, O.; Hren, R.; Panfilov, A.V., Comparison of electrophysiological models for human ventricular cells and tissues, Progr. biophys. mol. bio., 90, 326-345, (2006)
[61] ten Tusscher, K.H.W.J.; Panfilov, A.V., Modelling of the ventricular conduction system, Progr. biophys. mol. bio., 96, 152-170, (2008)
[62] Vigmond, E.J.; Aquel, F.; Trayanova, N.A., Computational techniques for solving the bidomain equations in three dimensions, IEE trans. biomed. engrg., 49, 1260-1269, (2002)
[63] Vu, D.K.; Steinmann, P., A 2-D coupled BEM-FEM simulation of electro-elastostatics at large strain, Comput. methods appl. mech. engrg., 199, 1124-1133, (2010), Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci · Zbl 1227.74104
[64] Whiteley, J.P., An efficient numerical technique for the solution of the monodomain and bidomain equations, IEEE trans. biomed. engrg., 53, 2139-2147, (2006)
[65] Weiss, D.; Ifland, M.; Sachse, F.B.; Seemann, G.; Dössel, O., Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations, Biomed. tech., 54, 107-125, (2009)
[66] Ying, W.; Rose, D.J.; Heriquez, C.S., Efficient fully implicit time integration methods for modeling cardiac dynamics, IEEE trans. biomed. engrg., 55, 2701-2711, (2008)
[67] Zhang, Y.; Bajaj, C.; Sohn, B.S., 3D finite element meshing from imaging data, Comput. methods appl. mech. engrg., 194, 5083-5106, (2005) · Zbl 1093.65019
[68] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C.L.; Hughes, T.J.R., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. methods appl. mech. engrg., 196, 2943-2959, (2007) · Zbl 1121.76076
[69] Zheng, Z.; Croft, J.; Giles, W.; Mensah, G., Sudden cardiac death in the united states, Circulation, 104, 2158-2163, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.