zbMATH — the first resource for mathematics

Dynamic crack analysis in piezoelectric solids with nonlinear electrical and mechanical boundary conditions by a time-domain BEM. (English) Zbl 1230.74211
Summary: This paper presents advanced transient dynamic crack analysis in two-dimensional, homogeneous and linear piezoelectric solids using non-linear mechanical and electrical crack-face boundary conditions. Stationary cracks in infinite and finite piezoelectric solids subjected to impact loadings are considered. For this purpose a time-domain boundary element method (TDBEM) is developed. A Galerkin-method is implemented for the spatial discretization, while a collocation method is applied for the temporal discretization. An explicit time-stepping scheme is obtained to compute the unknown boundary data including the generalized crack-opening-displacements (CODs) numerically. An iterative solution algorithm is developed to consider the non-linear semi-permeable electrical crack-face boundary conditions. Furthermore, an additional iteration scheme for crack-face contact analysis is implemented at time-steps when a physically meaningless crack-face intersection occurs. Several numerical examples are presented and discussed to show the effects of the electrical crack-face boundary conditions on the dynamic intensity factors.

74S15 Boundary element methods applied to problems in solid mechanics
74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
Full Text: DOI
[1] Aliabadi, M.H., The boundary element method, Applications in solids and structures, vol. 2, (2002), Computational Mechanics Publications, John Wiley & Sons · Zbl 0994.74003
[2] Balke, H.; Kemmer, G.; Drescher, J., Some remarks on fracture mechanics of piezoelectric solids, (), 398-401
[3] Chen, T.-C.; Chen, W.-H., Frictional contact analysis of multiple cracks by incremental displacement and resultant traction boundary integral equations, Engrg. anal. boundary elem., 21, 339-348, (1998) · Zbl 0955.74533
[4] Denda, M.; Araki, Y.; Yong, Y.K., Time-harmonic BEM for 2-D piezoelectricity applied to eigenvalue problems, Int. J. solids struct., 41, 7241-7265, (2004) · Zbl 1124.74327
[5] Denda, M., BEM analysis of semipermeable piezoelectric cracks, Key engrg. mater., 383, 67-84, (2008)
[6] Denda, M., Improved solution algorithm for the BEM analysis of multiple semipermeable piezoelectric cracks in 2-D, (), 255-261
[7] Dziatkiewicz, G.; Fedelinski, P., Dynamic analysis of piezoelectric structures by the dual reciprocity boundary element method, (), 121-126 · Zbl 1184.65110
[8] Enderlein, M.; Ricoeur, A.; Kuna, M., Finite element techniques for dynamic crack analysis in piezoelectrics, Int. J. fract., 134, 191-208, (2005) · Zbl 1196.74264
[9] M. Enderlein, Finite Element Method for Dynamic Crack Analysis in Piezoelectric Structures Under Transient Electro-Mechanical Loading, Ph.D. Thesis, TU Bergakademie Freiberg, Germany, 2007 (in German).
[10] García-Sánchez, F.; Zhang, Ch.; Sladek, J.; Sladek, V., 2-D transient dynamic crack analysis in piezoelectric solids by BEM, Comput. mater. sci., 39, 179-186, (2007)
[11] García-Sánchez, F.; Zhang, Ch.; Sáez, A., 2-D transient dynamic analysis of cracked piezoelectric solids by a time domain BEM, Comput. methods appl. mech. engrg., 197, 3108-3121, (2008) · Zbl 1194.74299
[12] Gaul, L.; Kögl, M.; Wagner, M., Boundary element methods for engineers and scientists, (2003), Springer-Verlag Berlin, Heidelberg · Zbl 1068.74613
[13] Gray, L.J., Evaluation of singular and hypersingular Galerkin boundary integrals: direct limits and symbolic computation, (), 33-84, Chapter 2
[14] Gray, L.J.; Griffith, B.E., A faster Galerkin boundary integral algorithm, Commun. numer. methods engrg., 14, 1109-1117, (1998) · Zbl 0922.65073
[15] Gross, D.; Dineva, P.; Rangelov, T., BIEM solution of piezoelectric cracked finite solids under time-harmonic loading, Engrg. anal. boundary elem., 31, 152-162, (2007) · Zbl 1195.74232
[16] Grübener, O.; Kamlah, M.; Munz, D., Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium, Engrg. fract. mech., 70, 1399-1413, (2003)
[17] Hao, T.H.; Shen, Z.Y., A new electric boundary condition of electric fracture mechanics and its applications, Engrg. fract. mech., 47, 793-802, (1994)
[18] G. Kemmer, Computation of Electro-Mechanical Intensity Parameters for Cracks in Piezo-Ceramics, Ph.D. Thesis, TU Dresden, Germany, 2000 (in German).
[19] Kögl, M.; Gaul, L., A boundary element method for transient piezoelectric analysis, Engrg. anal. boundary elem., 24, 591-598, (2000) · Zbl 1010.74075
[20] Kuna, M., Fracture mechanics of piezoelectric materials – where are we right now?, Engrg. fract. mech., 77, 309-326, (2010)
[21] Landis, C.M., Energetically consistent boundary conditions for electromechanical fracture, Int. J. solids struct., 41, 6291-6315, (2004) · Zbl 1120.74755
[22] Lee, S.S., Analysis of crack closure problem using the dual boundary element method, Int. J. fract., 77, 323-336, (1996)
[23] Liu, S.B.; Tan, C.L., Two-dimensional boundary element contact mechanics analysis of angled crack problems, Engrg. fract. mech., 42, 273-288, (1992)
[24] Liu, G.R.; Dai, K.Y.; Lim, K.M.; Gu, Y.T., A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures, Comput. mech., 29, 510-519, (2000) · Zbl 1146.74371
[25] Maier, G.; Novati, G.; Cen, Z., Symmetric-Galerkin boundary element method for quasi-brittle fracture and frictional contact problems, Comput. mech., 17, 74-89, (1995) · Zbl 0786.73080
[26] McMeeking, R.M., Crack tip energy release rate for a piezoelectric compact tension specimen, Engrg. fract. mech., 64, 217-244, (1999)
[27] Pak, Y.E., Linear electro-elastic fracture of piezoelectric materials, Int. J. fract., 54, 79-100, (1992)
[28] Phan, A.-V.; Napier, J.A.L.; Gray, L.J.; Kaplan, T., Symmetric-Galerkin BEM simulation of fracture with frictional contact, Int. J. numer. methods engrg., 57, 835-851, (2003) · Zbl 1062.74641
[29] A. Ricoeur, Theoretical Investigations of the Fracture Behaviour of Ferroelectric Ceramics Under Electro-Mechanical Loading, Habilitation Thesis, TU Bergakademie Freiberg, Germany, 2007 (in German).
[30] Ricoeur, A.; Kuna, M., Electrostatic tractions at crack faces and their influence on the fracture mechanics of piezoelectrics, Int. J. fract., 157, 3-12, (2009) · Zbl 1308.74050
[31] Sáez, A.; García-Sánchez, F.; Domínguez, J., Hypersingular BEM for dynamic fracture in 2-D piezoelectric solids, Comput. methods appl. mech. engrg., 196, 235-246, (2006) · Zbl 1120.74846
[32] Schneider, G.A.; Felten, F.; McMeeking, R.M., The electric potential difference across PZT measured by Kelvin probe microscopy and the implications for fracture, Acta materiala, 51, 2235-2241, (2003)
[33] Sirtori, G.; Maier, G.; Novati, G.; Miccoli, S., A Galerkin symmetric boundary element method in elasticity: formulation and implementation, Int. J. numer. methods engrg., 35, 255-282, (1992) · Zbl 0768.73089
[34] Sladek, J.; Sladek, V.; Zhang, Ch.; García-Sánchez, F.; Wünsche, M., Meshless local petrov – galerkin method for plane piezoelectricity, Comput. mater. continua, 4, 109-118, (2006)
[35] Sladek, J.; Sladek, V.; Zhang, Ch.; Solek, P.; Starek, L., Fracture analyses in continuously nonhomogeneous piezoelectric solids by the MLPG, Comput. model. engrg. sci., 19, 247-262, (2007) · Zbl 1184.74054
[36] Sladek, J.; Sladek, V.; Zhang, Ch.; Solek, P., Application of the MLPG to thermo-piezoelectricity, Comput. model. engrg. sci., 22, 217-233, (2007) · Zbl 1184.74070
[37] Suo, Z.; Kuo, C.-M.; Barnett, D.M.; Willis, J.R., Fracture mechanics for piezoelectric ceramics, J. mech. phys. solids, 4, 739-765, (1992) · Zbl 0825.73584
[38] Wang, C.-Y.; Zhang, Ch., 3-D and 2-D dynamic green’s functions and time-domain BIEs for piezoelectric solids, Engrg. anal. boundary elem., 29, 454-465, (2005) · Zbl 1182.74053
[39] Wippler, K.; Ricoeur, A.; Kuna, M., Towards the computation of electrically permeable cracks in piezoelectrics, Engrg. fract. mech., 71, 2567-2587, (2004)
[40] Wünsche, M.; Zhang, Ch.; García-Sánchez, F.; Sáez, A.; Sladek, J.; Sladek, V., On two hypersingular time-domain BEM for dynamic crack analysis in 2D anisotropic elastic solids, Comput. methods appl. mech. engrg., 198, 2812-2824, (2009) · Zbl 1228.74104
[41] Wünsche, M.; García-Sánchez, F.; Sáez, A.; Zhang, Ch., A 2D time-domain collocation-Galerkin BEM for dynamic crack analysis in piezoelectric solids, Engrg. anal. boundary elem., 34, 377-387, (2010) · Zbl 1244.74199
[42] Zang, W.L.; Gudmundson, P., Frictional contact problems of kinked cracks modelled by a boundary integral method, Int. J. numer. meth. engrg., 31, 427-446, (1991) · Zbl 0825.73895
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.