zbMATH — the first resource for mathematics

An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. (English) Zbl 1230.74197
Summary: Generating finite element discretizations with direct interface parameterizations constitutes a considerable computational expense in case of complex interface geometries. The paper at hand introduces a B-spline finite element method, which circumvents parameterization of interfaces and offers fast and easy meshing irrespective of the geometric complexity involved. Its core idea is the adaptive approximation of discontinuities by hierarchical grid refinement, which adds several levels of local basis functions in the close vicinity of interfaces, but unfitted to their exact location, so that a simple regular grid of knot span elements can be maintained. Numerical experiments show that an \(h\)p-refinement strategy, which simultaneously increases the polynomial degree of the B-spline basis and the levels of refinement around interfaces, achieves exponential rates of convergence despite the presence of discontinuities. It is also demonstrated that the hierarchical B-spline FEM can be used to transfer the recently introduced Finite Cell concept to geometrically nonlinear problems. Its computational performance, imposition of unfitted boundary conditions and fast hierarchical grid generation are illustrated for a set of benchmark problems in one, two and three dimensions, and the advantages of the regular grid approach for complex geometries are demonstrated by the geometrically nonlinear simulation of a voxel based foam composite.

74S05 Finite element methods applied to problems in solid mechanics
65D07 Numerical computation using splines
74B20 Nonlinear elasticity
Full Text: DOI
[1] Bastian, P.; Engwer, C., An unfitted finite element method using discontinuous Galerkin, Int. J. numer. methods engrg., 79, 1557-1576, (2009) · Zbl 1176.65131
[2] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Evans, J.A.; Hughes, T.J.R.; Lipton, S.; Scott, M.A.; Sederberg, T.W., Isogeometric analysis using T-splines, Comput. methods appl. mech. engrg., 199, 229-263, (2010) · Zbl 1227.74123
[3] Beirão da Veiga, L.; Buffa, A.; Rivas, J.; Sangalli, G., Some estimates for h-p – k-refinement in isogeometric analysis, Numer. math., 118, 2, 271-305, (2011) · Zbl 1222.41010
[4] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int. J. numer. methods engrg., 50, 993-1013, (2001) · Zbl 0981.74062
[5] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2006), Wiley New York
[6] Bonet, J.; Wood, R., Nonlinear continuum mechanics for finite element analysis, (2008), Cambridge University Press Cambridge · Zbl 1142.74002
[7] Bungartz, H.J.; Griebel, M.; Zenger, C., Introduction to computer graphics, (2004), Charles River Media Hingham
[8] Chen, H.F.; Han, F.S., Compressive behavior and energy absorbing characteristic of open cell aluminum foam filled with silicate rubber, Scr. mater., 49, 583-586, (2003)
[9] Cluff, D.R.A.; Esmaeili, S., Compressive properties of a new metal-polymer hybrid material, J. mater. sci., 44, 3867-3876, (2009)
[10] Cottrell, J.A.; Hughes, T.J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. methods appl. mech. engrg., 196, 4160-4183, (2007) · Zbl 1173.74407
[11] Cottrell, J.A.; Hughes, T.J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley New York · Zbl 1378.65009
[12] Demkowicz, L., Computing with hp-adaptive finite elements, () · Zbl 0956.78013
[13] Demkowicz, L.; Kurtz, J.; Pardo, D., Computing with hp-adaptive finite elements, () · Zbl 1118.65123
[14] de Souza Neto, E.A.; Perić, D.; Owen, D.R.J., Computational methods for plasticity: theory and applications, (2008), Wiley New York
[15] Dolbow, J.; Harari, I., An efficient finite element method for embedded interface problems, Int. J. numer. methods engrg., 78, 229-252, (2009) · Zbl 1183.76803
[16] Dörfel, M.R.; Simeon, B.; Jüttler, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. methods appl. mech. engrg., 199, 264-275, (2010) · Zbl 1227.74125
[17] Duarte, C.A.; Oden, J.T., An h-p adaptive method using clouds, Comput. methods appl. mech. engrg., 139, 237-262, (1996) · Zbl 0918.73328
[18] Düster, A.; Niggl, A.; Rank, E., Applying the hp-d version of the FEM to locally enhance dimensionally reduced models, Comput. methods appl. mech. engrg., 196, 3524-3533, (2007) · Zbl 1173.74413
[19] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. methods appl. mech. engrg., 197, 3768-3782, (2008) · Zbl 1194.74517
[20] Embar, A.; Dolbow, J.; Harari, I., Imposing Dirichlet boundary conditions with nitsche’s method and spline-based finite elements, Int. J. numer. methods engrg., 83, 877-898, (2010) · Zbl 1197.74178
[21] Farin, G., Curves and surfaces for CAGD, (2002), Morgan Kaufman Publishers San Francisco
[22] Fiedler, T.; Solórzano, E.; Garcia-Moreno, F.; Öchsner, A.; Belova, I.V.; Murch, G.E., Computed tomography based finite element analysis of the thermal properties of cellular aluminium, Mat.-wiss. u. werkstofftech., 40, 3, 139-143, (2009)
[23] FlagShyp 08 Version 2.30, Nonlinear FE solver developed by J. Bonet and R. Wood, 2008. Available from: <http://www.flagshyp.com>.
[24] Flemisch, B.; Wohlmuth, B., Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D, Comput. methods appl. mech. engrg., 196, 1589-1602, (2007) · Zbl 1173.74416
[25] Forsey, D.; Bartels, R., Hierarchical B-spline refinement, Comput. graph., 4, 205-212, (1988)
[26] Fries, T.P.; Belytschko, T., The extended/generalized finite element method: an overview of the method and its applications, Int. J. numer. methods engrg., 84, 253-304, (2010) · Zbl 1202.74169
[27] Glowinski, R.; Kuznetsov, Y., Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems, Comput. methods appl. mech. engrg., 196, 1498-1506, (2007) · Zbl 1173.65369
[28] Hackbusch, W.; Sauter, S.A., Composite finite elements for the approximation of PDEs on domains with complicated micro-structures, Numer. math., 75, 447-472, (1997) · Zbl 0874.65086
[29] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput. methods appl. mech. engrg., 191, 537-552, (2002) · Zbl 1035.65125
[30] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. methods appl. mech. engrg., 193, 3523-3540, (2004) · Zbl 1068.74076
[31] Hettich, T.; Ramm, E., Interface material failure modeled by the extended finite-element method and level sets, Comput. methods appl. mech. engrg., 195, 4753-4767, (2008) · Zbl 1154.74386
[32] U. Heisserer, High-order finite elements for material and geometric nonlinear finite strain problems, PhD thesis, Chair for Computation in Engineering, Technische Universität München, Shaker, Aachen, 2008.
[33] Höllig, K.; Reif, U.; Wipper, J., Multigrid methods with web-splines, Numer. math., 91, 237-256, (2002) · Zbl 0996.65138
[34] Höllig, K., Finite element methods with B-splines, (2003), Society for Industrial and Applied Mathematics Philadelphia · Zbl 1020.65085
[35] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover New York
[36] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. methods appl. mech. engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[37] Hughes, T.J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. methods appl. mech. engrg., 197, 4104-4124, (2008) · Zbl 1194.74114
[38] Hughes, T.J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. methods appl. mech. engrg., 199, 301-313, (2010) · Zbl 1227.65029
[39] Jhaver, R.; Tippur, H., Processing, compression response and finite element modeling of syntactic foam based interpenetrating phase composite (IPC), Mater. sci. engrg. A, 499, 507-517, (2009)
[40] Kobbelt, L., Multiresolution techniques, (), 343-361
[41] Kraft, R., Adaptive and linearly independent multilevel B-splines, (), 209-218 · Zbl 0937.65014
[42] Krause, R.; Mücke, R.; Rank, E., Hp-version finite elements for geometrically non-linear problems, Commun. numer. methods engrg., 11, 887-897, (1995) · Zbl 0835.73075
[43] Krysl, P.; Grinspun, E.; Schröder, P., Natural hierarchical refinement for finite element methods, Int. J. numer. methods engrg., 56, 1109-1124, (2003) · Zbl 1078.74660
[44] Lamichhane, B.; Wohlmuth, B., Mortar finite elements for interface problems, Computing, 72, 333-348, (2004) · Zbl 1055.65129
[45] Lapack Version 3.2.2, Linear Algebra Package, 2010. Available from: <http://www.netlib.org/lapack/>.
[46] Mergheim, J.; Steinmann, P., A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities, Comput. methods appl. mech. engrg., 195, 5037-5052, (2006) · Zbl 1126.74050
[47] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, J.F., A computational approach to handle complex microstructure geometries, Comp. methods appl. mech. engrg., 192, 3163-3177, (2003) · Zbl 1054.74056
[48] Mok, D.P.; Wall, W.A.; Bischoff, M.; Ramm, E., Algorithmic aspects of deformation dependent loads in non-linear static finite element analysis, Engrg. comput., 16, 5, 601-618, (1999) · Zbl 0986.74071
[49] Netgen Version 4.9.13, Tetrahdral mesh generator developed by Joachim Schöberl, 2010. Available from: <http://sourceforge.net/projects/netgen-mesher>.
[50] Oden, J.T.; Duarte, C.A.; Zienkiewicz, O.C., A new cloud-based hp finite element method, Comput. methods appl. mech. engrg., 153, 117-126, (1998) · Zbl 0956.74062
[51] PARDISO Solver Project, Direct solver developed by O. Schenk, K. Gärtner et al., 2010. Available from: <http://www.pardiso-project.org>.
[52] Parvizian, J.; Düster, A.; Rank, E., Finite cell method: h- and p- extension for embedded domain methods in solid mechanics, Comput. mech., 41, 122-133, (2007) · Zbl 1162.74506
[53] Piegl, L.A.; Tiller, W., The NURBS book (monographs in visual communication), (1997), Springer New York
[54] T. Preusser, M. Rumpf, S. Sauter, L.O. Schwen, 3D composite finite elements for elliptic boundary value problems with discontinuous coefficients, SIAM Journal on Scientific Computing (submitted for publication). · Zbl 1237.65129
[55] Ramière, I.; Angot, P.; Belliard, M., A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. methods appl. mech. engrg., 196, 766-781, (2007) · Zbl 1121.65364
[56] Rank, E., Adaptive remeshing and h-p domain decomposition, Comput. methods appl. mech. engrg., 101, 299-313, (1992) · Zbl 0782.65145
[57] Reid, A.C.E.; Lua, R.C.; García, R.E.; Coffman, V.R.; Langer, S.A., Modelling microstructures with OOF2, Int. J. mater. prod. technol., 35, 361-373, (2009)
[58] Rogers, D.F., An introduction to NURBS with historical perspective, (2001), Morgan Kaufman Publishers San Francisco
[59] Sanches, R.A.K.; Bornemann, P.B.; Cirak, F., Immersed b-spline (i-spline) finite element method for geometrically complex domains, Comput. methods appl. mech. engrg., 200, 13-16, 1432-1445, (2011) · Zbl 1228.74097
[60] Schillinger, D.; Kollmannsberger, S.; Mundani, R.-P.; Rank, E., The finite cell method for geometrically nonlinear problems of solid mechanics, IOP conf. ser.: mater. sci. engrg., 10, 012170, (2010)
[61] D. Schillinger, A. Düster, E. Rank, The hp-d adaptive Finite Cell Method for geometrically nonlinear problems of solid mechanics, Int. J. Numer. Methods Engrg. (in press), doi:10.1002/nme.3289. · Zbl 1242.74161
[62] Schweizerhof, K.; Ramm, E., Displacement dependent pressure loads in nonlinear finite element analyses, Comput. struct., 18, 1099-1114, (1984) · Zbl 0554.73069
[63] Sederberg, T.W.; Cardon, D.L.; Finnigan, G.T.; North, N.S.; Zheng, J.; Lyche, T., T-spline simplification and local refinement, ACM trans. graph., 23, 3, 276-283, (2004)
[64] Sehlhorst, H.-G.; Jänicke, R.; Düster, A.; Rank, E.; Steeb, H.; Diebels, S., Numerical investigations of foam-like materials by nested high-order finite element methods, Comput. mech., 45, 45-59, (2009) · Zbl 1398.74402
[65] Simo, J.C.; Taylor, R.L.; Wriggers, P., A note on finite-element implementation of pressure boundary loading, Commun. appl. numer. methods, 7, 513-525, (1991) · Zbl 0735.73080
[66] Šolín, P.; Segeth, K.; Doležel, I., Higher-order finite element methods, (2004), Chapman& Hall/CRC Boca Raton
[67] Srinivasan, K.R.; Matouš, K.; Geubelle, P.H., Generalized finite element method for modeling nearly incompressible bimaterial hyperelastic solids, Comput. methods appl. mech. engrg., 197, 4882-4893, (2008) · Zbl 1194.74473
[68] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Comput. methods appl. mech. engrg., 190, 4081-4193, (2001) · Zbl 0997.74069
[69] Sukumar, N.; Chopp, D.L.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite-element method, Comput. methods appl. mech. engrg., 190, 6183-6200, (2001) · Zbl 1029.74049
[70] Szabó, B.; Babuška, I., Finite element analysis, (1991), Wiley New York
[71] Trilinos Version 10.2, Sandia National Laboratories, Los Alamos, NM, 2010. Available from: <http://trilinos.sandia.gov/>.
[72] Visual DoMesh 2008 Version 1.1, Mesh generator developed by C. Sorger, Chair for Computation in Engineering, Technische Universität München, 2010.
[73] Warren, J.; Weimer, H., Subdivision methods for geometric design, (2002), Morgan Kaufman Publishers San Francisco
[74] P. Wenisch, O. Wenisch, Fast octree-based voxelization of 3D boundary representation objects, Technical report, Lehrstuhl für Bauinformatik, Technische Universität München, 2004.
[75] Wriggers, P., Nonlinear finite element methods, (2008), Springer Berlin · Zbl 1153.74001
[76] Yosibash, Z.; Hartmann, S.; Heisserer, U.; Düster, A.; Rank, E.; Szanto, M., Axisymmetric pressure boundary loading for finite deformation analysis using p-FEM, Comput. methods appl. mech. engrg., 196, 1261-1277, (2007) · Zbl 1173.74451
[77] Yosibash, Z.; Padan, R.; Joskowicz, L.; Milgrom, C., A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments, J. biomech. engrg., 129, 297-309, (2007)
[78] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W.K., Immersed finite element method, Comput. methods appl. mech. engrg., 193, 2051-2067, (2004) · Zbl 1067.76576
[79] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, vol. 1, (2000), The Basis. Butterworth-Heinemann Oxford · Zbl 0991.74002
[80] Zohdi, T.; Wriggers, P., Introduction to computational micromechanics, (2005), Springer Berlin · Zbl 1085.74001
[81] D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, W. Sweldens, Subdivision for Modeling and Animation, SIGGRAPH course notes, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.