×

zbMATH — the first resource for mathematics

Fixed point theory for set-valued quasi-contraction maps in metric spaces. (English) Zbl 1230.54034
Summary: We give a fixed point theorem for set-valued quasi-contraction maps in metric spaces. Our main result improves some well-known results from the literature.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54C60 Set-valued maps in general topology
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ćirić, L.B., A generalization of banach’s contraction principle, Proc. amer. math. soc., 45, 2, 267-273, (1974) · Zbl 0291.54056
[2] Nadler, S.B., Multi-valued contraction mappings, Pacific J. math., 30, 475-488, (1969) · Zbl 0187.45002
[3] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, J. math. anal. appl., 141, 177-188, (1989) · Zbl 0688.54028
[4] B. Djafari Rouhani, S. Moradi, Common fixed point of multivalued generalized \(\varphi\)-weak contractive mappings, Fixed Point Theory and Applications, vol. 2010, Article ID 708984, 13 pages. · Zbl 1202.54041
[5] Daffer, P.Z.; Kaneko, H., Fixed points of generalized contractive multi-valued mappings, J. math. anal. appl., 192, 655-666, (1995) · Zbl 0835.54028
[6] Rezapour, Sh.; Haghi, R.H.; Shahzad, N., Some notes on fixed points of quasi-contraction maps, Appl. math. lett., 23, 4, 498-502, (2010) · Zbl 1206.54061
[7] Al-Thagafi, M.A.; Shahzad, N., Coincidence points, generalized \(I\)-nonexpansive multimaps, and applications, Nonlinear anal., 67, 2180-2188, (2007) · Zbl 1125.47038
[8] O’Regan, D.; Shahzad, N., Invariant approximations for generalized \(I\)-contractions, Numer. funct. anal. optim., 26, 565-575, (2005) · Zbl 1084.41023
[9] O’Regan, D.; Shahzad, N., Coincidence points and invariant approximation results for multimaps, Acta math. sin. (engl. ser.), 23, 1601-1610, (2007) · Zbl 1131.54030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.