×

Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. (English) Zbl 1229.74096

Summary: Left ventricular assist devices (LVADs) are continuous flow pumps that are employed in patients with severe heart failure. Although their emergence has significantly improved therapeutic options for patients with heart failure, detailed studies of the impact of LVADs on hemodynamics are notably lacking. To this end we initiate a computational study of the Jarvik 2000 LVAD model employing isogeometric fluid-structure interaction analysis. We focus on a patient-specific configuration in which the LVAD is implanted in the descending thoracic aorta. We perform computations for three pump settings and report our observations for several quantities of hemodynamic interest. It should be noted that this paper presents the first three-dimensional, patient-specific fluid-structure interaction simulation of LVADs.

MSC:

74L15 Biomechanical solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Z05 Physiological flows
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akkerman, I.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. mech., 41, 371-378, (2008) · Zbl 1162.76355
[2] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid – structure interaction: theory, algorithms and computations, Comput. mech., 43, 3-37, (2008) · Zbl 1169.74015
[3] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid – structure interaction analysis with applications to arterial blood flow, Comput. mech., 38, 310-322, (2006) · Zbl 1161.74020
[4] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. methods appl. mech. engrg., 197, 173-201, (2007) · Zbl 1169.76352
[5] Bazilevs, Y.; Beirao da Veiga, L.; Cottrell, J.A.; Hughes, T.J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. models methods appl. sci., 16, 1031-1090, (2006) · Zbl 1103.65113
[6] Bazilevs, Y.; Michler, C.; Calo, V.M.; Hughes, T.J.R., Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. methods appl. mech. engrg., 196, 4853-4862, (2007) · Zbl 1173.76397
[7] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[8] Chung, J.; Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. appl. mech., 60, 371-375, (1993) · Zbl 0775.73337
[9] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. methods appl. mech. engrg., 195, 5257-5296, (2006) · Zbl 1119.74024
[10] Dettmer, W.; Perić, D., A computational framework for fluid – structure interaction: finite element formulation and applications, Comput. methods appl. mech. engrg., 195, 5754-5779, (2006) · Zbl 1155.76354
[11] Elguedj, T.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R., B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elements, Comput. methods appl. mech. engrg., 197, 2732-2762, (2008) · Zbl 1194.74518
[12] Farhat, C.; Geuzaine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids, J. comput. phys., 174, 2, 669-694, (2001) · Zbl 1157.76372
[13] Fernandez, M.A.; Moubachir, M., A Newton method using exact Jacobians for solving fluid – structure coupling, Comput. struct., 83, 127-142, (2005)
[14] Figueroa, A.; Vignon-Clementel, I.E.; Jansen, K.E.; Hughes, T.J.R.; Taylor, C.A., A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. methods appl. mech. engrg., 195, 5685-5706, (2006) · Zbl 1126.76029
[15] Formaggia, L.; Gerbeau, J.-F.; Nobile, F.; Quarteroni, A., On the coupling of 3D and 1D navier – stokes equations for flow problems in compliant vessels, Comput. methods appl. mech. engrg., 191, 561-582, (2001) · Zbl 1007.74035
[16] Formaggia, L.; Nobile, F., Stability analysis of second-order time accurate schemes for ALE-FEM, Comput. methods appl. mech. engrg., 193, 4097-4116, (2005) · Zbl 1175.76091
[17] Glagov, S.; Zarins, C.; Giddens, D.P.; Ku, D.N., Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries, Arch. pathol. lab. med., 112, 1018-1031, (1988)
[18] J.R. Gohean, A closed-loop multi-scale model of the cardiovascular system for evaluation of ventricular devices, Master’s Thesis, University of Texas, Austin, May 2007.
[19] Golub, G.H.; Van Loan, C.F., Matrix computations, (1996), The Johns Hopkins University Press · Zbl 0865.65009
[20] Gould, P.L., Introduction to linear elasticity, (1999), Springer-Verlag Berlin
[21] Hetzer, R.; Jurmann, M.J.; Potapov, E.V.; Hennig, E.; Stiller, B.; Muller, J.H.; Weng, Y., Heart assist systems: current status, Hertz, 20, 407, (2002)
[22] Heywood, J.G.; Rannacher, R.; Turek, S., Artificial boundaries and flux and pressure conditions for the incompressible navier – stokes equations, Int. J. numer. methods fluids, 22, 325-352, (1996) · Zbl 0863.76016
[23] Holzapfel, G.A., Nonlinear solid mechanics, a continuum approach for engineering, (2000), Wiley Chichester · Zbl 0980.74001
[24] T.J.R. Hughes, A study of the one-dimensional theory of arterial pulse propagation, PhD Thesis, University of California, Berkeley, 1974.
[25] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. methods appl. mech. engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[26] Hughes, T.J.R.; Lubliner, J., On the one-dimensional theory of blood flow in the large vessels, Math. biosci., 18, 161-170, (1973) · Zbl 0262.92004
[27] Jansen, K.E.; Whiting, C.H.; Hulbert, G.M., A generalized-α method for integrating the filtered navier – stokes equations with a stabilized finite element method, Comput. methods appl. mech. engrg., 190, 305-319, (1999) · Zbl 0973.76048
[28] Johnson, C., Numerical solution of partial differential equations by the finite element method, (1987), Cambridge University Press Sweden
[29] Kar, B.; Delgado, R.M.; Frazier, O.H.; Gregoric, I.; Harting, M.T.; Wadia, Y.; Myers, T.; Moser, R.; Freund, J., The effect of LVAD aortic outflow-graft placement on hemodynamics and flow, J. Texas heart inst., 32, 294-298, (2005)
[30] Kilner, P.J.; Yang, G.Z.; Mohiaddin, R.H.; Firmin, D.N.; Longmore, D.B., Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping, Circulation, 88, 2235-2247, (1993)
[31] Lagana, K.; Dubini, G.; Migliavacca, F.; Pietrabissa, R.; Pennati, G.; Veneziani, A.; Quarteroni, A., Multiscale modeling as a tool to prescribe realistic boundary conditions for the study of surgical procedures, Biorheology, 39, 359-364, (2002)
[32] Le Tallec, P.; Mouro, J., Fluid structure interaction with large structural displacements, Comput. methods appl. mech. engrg., 190, 3039-3068, (2001) · Zbl 1001.74040
[33] Levesque, M.J.; Liepsch, D.; Moravec, S.; Nerem, R.M., Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta, Arteriosclerosis, 6, 220-229, (1986)
[34] Levesque, M.J.; Nerem, R.M., The elongation and orientation of cultured endothelial cells in response to shear stress, J. biomech. engrg., 107, 341-347, (1985)
[35] Lighthill, J., Mathematical biofluid dynamics, (1989), SIAM Philadelphia, PA
[36] Liu, S.Q.; Zhong, L.; Goldman, J., Control of the shape of a thrombus-neointima-like structure by blood shear stress, J. biomech. engrg., 124, 30, (2002)
[37] Marsden, J.E.; Hughes, T.J.R., Mathematical foundations of elasticity, (1993), Dover Publications Inc. New York
[38] Masud, A.; Hughes, T.J.R., A space – time Galerkin/least-squares finite element formulation of the navier – stokes equations for moving domain problems, Comput. methods appl. mech. engrg., 148, 91-126, (1997) · Zbl 0899.76259
[39] May-Newman, K.D.; Hillen, B.K.; Sironda, C.S.; Dembitsky, W., Effect of LVAD outflow conduit insertion angle on ow through the native aorta, J. med. engrg. technol., 28, 105-109, (2004)
[40] Okano, M.; Yoshida, Y., Junction complexes of endothelial cells in atherosclerosis-prone and atherosclerosis-resistant regions on flow dividers of brachiocephalic bifurcations in the rabbit aorta, Biorheology, 31, 155-161, (1994)
[41] Olufsen, M., Structured tree outflow condition for blood flow in larger systemic arteries, Amer. J. physiol., 276, 1 Pt 2, H257-H268, (1999)
[42] Olufsen, M., A one-dimensional fluid dynamic model of the systemic arteries, Stud. health technol. inform., 71, 79-97, (2000)
[43] M.S. Olufsen, Modeling of the arterial system with reference to an anesthesia simulator, Ph.D. Thesis, Roskilde University, 1998.
[44] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. stat. comput., 7, 856-869, (1986) · Zbl 0599.65018
[45] Shaaban, A.M.; Duerinckx, A.J., Wall shear stress and early atherosclerosis: a review, Amer. J. roentgenol., 174, 1657-1665, (2000)
[46] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (1998), Springer-Verlag New York · Zbl 0934.74003
[47] Stein, K.; Tezduyar, T.; Benney, R., Mesh moving techniques for fluid – structure interactions with large displacements, J. appl. mech., 70, 58-63, (2003) · Zbl 1110.74689
[48] Stein, K.; Tezduyar, T.E.; Benney, R., Automatic mesh update with the solid-extension mesh moving technique, Comput. methods appl. mech. engrg., 193, 2019-2032, (2004) · Zbl 1067.74587
[49] Texas Advanced Computing Center (TACC). <http://www.tacc.utexas.edu>.
[50] Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K., Finite element modeling of blood flow in arteries, Comput. methods appl. mech. engrg., 158, 155-196, (1998) · Zbl 0953.76058
[51] Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K., Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis, Ann. biomed. engrg., 26, 975-987, (1998)
[52] Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K., Effect of exercise on hemodynamic conditions in the abdominal aorta, J. vas. surg., 29, 1077-1089, (1999)
[53] Tezduyar, Tayfun E.; Sathe, Sunil, Modelling of fluid – structure interactions with the space – time finite elements: solution techniques, Int. J. numer. methods fluids, 54, 855-900, (2007) · Zbl 1144.74044
[54] Tezduyar, Tayfun E.; Sathe, Sunil; Cragin, Timothy; Nanna, Bryan; Conklin, Brian S.; Pausewang, Jason; Schwaab, Matthew, Modelling of fluid – structure interactions with the space – time finite elements: arterial fluid mechanics, Int. J. numer. methods fluids, 54, 901-922, (2007) · Zbl 1276.76043
[55] T.E. Tezduyar, M. Behr, S. Mittal, A.A. Johnson, Computation of unsteady incompressible flows with the stabilized finite element methods – space – time formulations, iterative strategies and massively parallel implementations, in: New Methods in Transient Analysis, PVP, vol. 246, AMD, vol. 143, ASME, New York, 1992, pp. 7-24.
[56] Tezduyar, T.E.; Sathe, S.; Keedy, R.; Stein, K., Space – time finite element techniques for computation of fluid – structure interactions, Comput. methods appl. mech. engrg., 195, 2002-2027, (2006) · Zbl 1118.74052
[57] Vignon-Clementel, I.E.; Figueroa, C.A.; Jansen, K.E.; Taylor, C.A., Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Comput. methods appl. mech. engrg., 195, 3776-3796, (2006) · Zbl 1175.76098
[58] Wootton, D.M.; Ku, D.N., Fluid mechanics of vascular systems, diseases, and thrombosis, Ann. rev. biomed. engrg., 1, 299, (1999)
[59] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C.; Hughes, T.J.R., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. methods appl. mech. engrg., 196, 2943-2959, (2007) · Zbl 1121.76076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.