×

zbMATH — the first resource for mathematics

Dynamic measurements in long-memory materials: fractional calculus evaluation of approach to steady state. (English) Zbl 1229.74016
Summary: Fractional calculus descriptions of polymer viscoelasticity are becoming increasingly popular, as they allow a concise description of non-Debye relaxation and memory of strain history using a minimal parameter set. Use of fractional calculus to this end is frequently restricted to descriptions of dynamic behaviour, for example in dynamic mechanical thermal analysis (DMTA), where the dependence of the complex modulus on frequency can be expressed algebraically in closed form. However, this approach is only valid in the steady state. The material’s approach to the steady state, and the effect of the slowly-decaying transient on DMTA measurements, are addressed here. “Data” are generated by integration of the time-domain fractional integral constitutive equation describing the fractional Zener model, and are analysed by a procedure inspired by a commercial DMTA instrument manual. Results show that the frequency dependence of the decay of the initial transient leads to difficulties in retrieving a single parameter set from the data, demonstrating that a specific procedure is required when evaluating long-memory materials.

MSC:
74D05 Linear constitutive equations for materials with memory
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alcoutlabi, M., Polymer 39 pp 6269– (1998) · doi:10.1016/S0032-3861(98)00168-2
[2] Bauwens, J.-C., Plastics, Rubber and Composites Processing and Applications 18 pp 149– (1992)
[3] Beris, A.N., Rheologica Acta 32 pp 505– (1993) · doi:10.1007/BF00396182
[4] Friedrich, C., J. Casas-Vazquez and D. Jou, eds., Springer, Berlin, Lecture Notes in Physics 381 pp 321– (1991)
[5] Friedrich, C., Rheologica Acta 30 pp 151– (1991) · doi:10.1007/BF01134604
[6] Friedrich, C., Journal of Non-Newtonian Fluid Mechanics 46 pp 307– (1993) · Zbl 0775.76005 · doi:10.1016/0377-0257(93)85052-C
[7] Glöckle, W.G., Macromolecules 24 pp 6426– (1991) · doi:10.1021/ma00024a009
[8] Hellinckx, S., Colloid and Polymer Science 273 pp 130– (1995) · doi:10.1007/BF00654010
[9] Hellinckx, S., Colloid and Polymer Science 275 pp 116– (1997) · doi:10.1007/s003960050060
[10] Heymans, N., Rheologica Acta 35 pp 508– (1996) · doi:10.1007/BF00369000
[11] Heymans, N., Proceedings of 5th European Rheology Conference, Progress & Trends in Rheology
[12] Heymans, N., Proceedings of the 1st Canadian Conference on Nonlinear Solid Mechanics
[13] Heymans, N., Proceedings of the 11t h International Conference on Deformation, Yield and Fracture of Polymers
[14] Heymans, N., Signal Processing 83 pp 2345– (2003) · Zbl 1145.74334 · doi:10.1016/S0165-1684(03)00187-7
[15] Heymans, N., Nonlinear Dynamics 38 pp 221– (2004) · Zbl 1142.74312 · doi:10.1007/s11071-004-3757-5
[16] Heymans, N., Rheologica Acta 33 pp 210– (1994) · doi:10.1007/BF00437306
[17] Heymans, N., Rheologica Acta 43 pp 383– (2004) · doi:10.1007/s00397-003-0354-3
[18] Koeller, R.C., Journal of Applied Mechanics 51 pp 299– (1984) · Zbl 0544.73052 · doi:10.1115/1.3167616
[19] Schiessel, H., Journal of Physics A: Mathematical & General 26 pp 5057– (1993) · doi:10.1088/0305-4470/26/19/034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.