zbMATH — the first resource for mathematics

Some equalities for estimations of partial coefficients under a general linear regression model. (English) Zbl 1229.62075
Summary: Estimations of partial coefficients in general regression models involve some complicated operations of matrices and their generalized inverses. We use the matrix rank method to derive necessary and sufficient conditions for the ordinary least-squares estimator and the best linear unbiased estimator of partial coefficients in a general linear regression model to equal.

62H12 Estimation in multivariate analysis
62J05 Linear regression; mixed models
15A09 Theory of matrix inversion and generalized inverses
Full Text: DOI
[1] Alalouf IS, Styan GPH (1979) Characterizations of estimability in the general linear model. Ann Statist 7: 194–200 · Zbl 0398.62053 · doi:10.1214/aos/1176344564
[2] Chu KL, Isotalo J, Puntanen S, Styan GPH (2004) On decomposing the Watson efficiency of ordinary least squares in a partitioned weakly singular linear model. Sankhyā 66: 634–651 · Zbl 1193.62094
[3] Frisch R, Waugh F (1933) Partial time regressions as compared with individual trends. Econometrica 1: 387–401 · JFM 59.1207.14 · doi:10.2307/1907330
[4] Groß J, Puntanen S (2000) Estimation under a general partitioned linear model. Linear Algebra Appl 321: 131–144 · Zbl 0966.62033 · doi:10.1016/S0024-3795(00)00028-8
[5] Groß J, Trenkler G (1998) On the equality of linear statistics in general Gauss-Markov model. In: Mukherjee SP, Basu SK, Sinha BK (eds) Frontiers of statistics. Narosa Publishing House, New Delhi, pp 189–194 · Zbl 1008.62631
[6] Groß J, Trenkler G, Werner HJ (2001) The equality of linear transformations of the ordinary least squares estimator and the best linear unbiased estimator. Sankhyā Ser A 63: 118–127 · Zbl 1004.62056
[7] Isotalo J, Puntanen S (2009) A note on the equality of the OLSE and the BLUE of the parametric functions in the general Gauss-Markov model. Stat Pap 50: 185–193 · Zbl 1309.62113 · doi:10.1007/s00362-007-0055-6
[8] Lovell M (1963) Seasonal adjustment of economic time series. J Am Stat Assoc 58: 993–1010 · Zbl 0113.14302 · doi:10.1080/01621459.1963.10480682
[9] Marsaglia G, Styan GPH (1974) Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2: 269–292 · Zbl 0297.15003 · doi:10.1080/03081087408817070
[10] Penrose R (1955) A generalized inverse for matrices. Proc Cambridge Philos Soc 51: 406–413 · Zbl 0065.24603 · doi:10.1017/S0305004100030401
[11] Puntanen S (1996) Some matrix results related to a partitioned singular linear model. Commun Stat Theory Methods 25: 269–279 · Zbl 0875.62288 · doi:10.1080/03610929608831694
[12] Puntanen S, Styan GPH (1989) The equality of the ordinary least squares estimator and the best linear unbiased estimator (with discussion). Am Stat 43: 153–164
[13] Puntanen S, Styan GPH, Tian Y (2005) Three rank formulas associated with the covariance matrices of the BLUE and the OLSE in the general linear model. Econom Theory 21: 659–664 · Zbl 1072.62049
[14] Qian H, Schmidt P (2003) Partial GLS regression. Econ Lett 79: 385–392 · Zbl 1255.62377 · doi:10.1016/S0165-1765(03)00033-8
[15] Qian H, Tian Y (2006) Partially superfluous observations. Econom Theory 22: 529–536 · Zbl 1125.62069
[16] Rao CR (1971) Unified theory of linear estimation. Sankhyā Ser A 33: 371–394 · Zbl 0236.62048
[17] Rao CR (1973) Representations of best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix. J Multivar Anal 3: 276–292 · Zbl 0276.62068 · doi:10.1016/0047-259X(73)90042-0
[18] Tian Y (2007) Some decompositions of OLSEs and BLUEs under a partitioned linear model. Internat Stat Rev 75: 224–248 · doi:10.1111/j.1751-5823.2007.00018.x
[19] Tian Y (2009a) On an additive decomposition of the BLUE in a multiple partitioned linear model. J Multivar Anal 100: 767–776 · Zbl 1155.62045 · doi:10.1016/j.jmva.2008.08.006
[20] Tian Y (2009b) On equalities for BLUEs under misspecified Gauss-Markov models. Acta Math Sin (Engl Ser) 25: 1907–1920 · Zbl 1180.62083 · doi:10.1007/s10114-009-6375-9
[21] Tian Y, Beisiegel M, Dagenais E, Haines C (2008) On the natural restrictions in the singular Gauss-Markov model. Stat Pap 49: 553–564 · Zbl 1148.62053 · doi:10.1007/s00362-006-0032-5
[22] Tian Y, Puntanen S (2009) On the equivalence of estimations under a general linear model and its transformed models. Linear Algebra Appl 430: 2622–2641 · Zbl 1160.62330 · doi:10.1016/j.laa.2008.09.016
[23] Tian Y, Takane Y (2008a) On sum decompositions of weighted least-squares estimators under the partitioned linear model. Commun Stat Theory Methods 37: 55–69 · Zbl 1139.62029
[24] Tian Y, Takane Y (2008b) Some properties of projectors associated with the WLSE under a general linear model. J Multivar Anal 99: 1070–1082 · Zbl 1141.62043 · doi:10.1016/j.jmva.2007.07.006
[25] Tian Y, Takane Y (2009a) On V-orthogonal projectors associated with a semi-norm. Ann Inst Stat Math 61: 517–530 · Zbl 1332.15016 · doi:10.1007/s10463-007-0150-4
[26] Tian Y, Takane Y (2009b) On consistency, natural restrictions and estimability under classical and extended growth curve models. J Stat Plann Inference 139: 2445–2458 · Zbl 1160.62051 · doi:10.1016/j.jspi.2008.11.017
[27] Tian Y, Wiens DP (2006) The equalities of ordinary least-squares estimators and best linear unbiased estimators for the restricted linear model. Stat Probab Lett 76: 1165–1272 · Zbl 1123.62038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.