×

zbMATH — the first resource for mathematics

Output regulation for linear distributed-parameter systems using finite-dimensional dual observers. (English) Zbl 1228.93022
Summary: The solution of the output regulation problem is considered for linear infinite-dimensional systems where the outputs to be controlled cannot be measured. It is shown that this problem can be solved by a finite-dimensional dual observer that is directly implementable so that the separation principle can be applied for the stabilization as in finite dimensions. A parametric design of these dual observers is proposed for Riesz-spectral systems that allows to achieve a low controller order and a desired control performance for the closed-loop system. The presented results are illustrated by determining a finite-dimensional regulator for an Euler-Bernoulli beam with Kelvin-Voigt damping that achieves tracking for steplike reference inputs and that asymptotically rejects sinusoidal disturbances.

MSC:
93B07 Observability
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
93B60 Eigenvalue problems
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balas, M.J., Active control of flexible systems, Journal of optimization theory and applications, 25, 415-436, (1978) · Zbl 0362.93008
[2] Byrnes, Ch.I.; Gilliam, D.; Shubov, V., Geometric theory of output regulation for linear distributed parameter systems, Frontiers in applied mathematics, 27, 139-167, (2003)
[3] Byrnes, Ch.I.; Lauko, I.; Gilliam, D.; Shubov, V., Output regulation for linear distributed parameter systems, IEEE transactions on automatic control, 45, 2236-2252, (2000) · Zbl 1056.93552
[4] Byrnes, Ch.I.; Priscoli, F.D.; Isidori, A., Output regulation for uncertain nonlinear systems, (1997), Birkäuser Boston
[5] Chentouf, B.; Wang, J., A Riesz basis methodology for proportional and integral output regulation of a one-dimensional diffusive-wave equation, SIAM journal on control and optimization, 47, 2275-2302, (2008) · Zbl 1176.35023
[6] Curtain, R.F.; Zwart, H.J., An introduction to infinite-dimensional linear systems theory, (1995), Springer-Verlag New York · Zbl 0646.93014
[7] Davison, E.J., The robust control of a servomechanism problem for linear time-invariant multivariable systems, IEEE transactions on automatic control, 21, 25-34, (1976) · Zbl 0326.93007
[8] Deutscher, J.; Harkort, Ch., A parametric approach to finite-dimensional control of linear distributed-parameter systems, International journal of control, 83, 1674-1685, (2010) · Zbl 1200.93058
[9] Francis, B.A., The linear multivariable regulator problem, SIAM journal on control and optimization, 15, 486-505, (1977) · Zbl 0382.93025
[10] Francis, B.A.; Wonham, W.M., The internal model principle for linear multivariable regulators, Applied mathematics & optimization, 2, 170-194, (1975) · Zbl 0351.93015
[11] Hämäläinen, T.; Pohjolainen, S., A finite-dimensional robust controller for systems in the CD-algebra, IEEE transactions on automatic control, 45, 421-431, (2000) · Zbl 0972.93014
[12] Harkort, Ch., & Deutscher, J. Finite-dimensional observer-based control of Riesz-spectral systems — spectrum properties and eigenvalue estimates. Technical report, Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg, 2010. · Zbl 1200.93058
[13] Immonen, E. State space output regulation theory for infinite-dimensional linear systems and bounded uniformly continuous exogenous signals. Ph.D. dissertation, Tampere University of Technology, Tampere, Finland, 2006. · Zbl 1099.93011
[14] Immonen, E., A simple robust controller for the approximate regulation of almost perodic signals for linear systems, IEEE transactions on automatic control, 52, 2313-2324, (2007) · Zbl 1366.93245
[15] Johnson, C.D., Accomodation of external disturbances in linear regulator and servomechanism problems, IEEE transactions on automatic control, 16, 635-644, (1971)
[16] Knobloch, H.W.; Isidori, A.; Flockerzi, D., Topics in control theory, (1993), Birkhäuser Verlag Basel · Zbl 0789.93073
[17] Luenberger, D., An introduction to observers, IEEE transactions on automatic control, 16, 596-602, (1971)
[18] Lumer, G.; Rosenblum, M., Linear operator equations, Proceedings of the American mathematical society, 10, 32-41, (1959) · Zbl 0133.07903
[19] Paunonen, L.; Pohjolainen, S., Internal model theory for distributed parameter systems, SIAM journal on control and optimization, 48, 4753-4775, (2010) · Zbl 1214.93054
[20] Pohjolainen, S.A., Robust multivariable PI-controller for infinite-dimensional systems, IEEE transactions on automatic control, 27, 17-30, (1982) · Zbl 0493.93029
[21] Rebarber, R.; Weiss, G., Internal model based tracking and disturbance rejection for stable well-posed systems, Automatica, 39, 1555-1569, (2003) · Zbl 1028.93012
[22] Schumacher, J.M., Finite-dimensional regulators for a class of infinite-dimensional systems, Systems & control letters, 3, 7-12, (1983) · Zbl 0524.93026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.