×

zbMATH — the first resource for mathematics

Survival analysis of a stochastic cooperation system in a polluted environment. (English) Zbl 1228.92074

MSC:
92D40 Ecology
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
34C60 Qualitative investigation and simulation of ordinary differential equation models
37N25 Dynamical systems in biology
65C20 Probabilistic models, generic numerical methods in probability and statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hallam T. G., Ecol. Model. 8 pp 291–
[2] Hallam T. G., J. Math. Biol. 109 pp 411–
[3] DOI: 10.1016/S0022-5193(84)80090-9 · doi:10.1016/S0022-5193(84)80090-9
[4] DOI: 10.1007/BF00275641 · Zbl 0606.92022 · doi:10.1007/BF00275641
[5] Ma Z., Math. Biosci. 101 pp 75–
[6] Liu H., J. Math. Biol. 30 pp 49–
[7] DOI: 10.1142/S0218339096000090 · doi:10.1142/S0218339096000090
[8] Ma Z., J. Math. Anal. Appl. 210 pp 440– · Zbl 1136.43009
[9] Wang W., Acta Math. Appl. Sin. Engl. Ser. 1 pp 86–
[10] DOI: 10.1016/S0025-5564(98)10076-7 · doi:10.1016/S0025-5564(98)10076-7
[11] DOI: 10.1142/S021833900200055X · Zbl 1099.92074 · doi:10.1142/S021833900200055X
[12] DOI: 10.1142/S0218339003000907 · Zbl 1041.92044 · doi:10.1142/S0218339003000907
[13] DOI: 10.1007/BF02936164 · Zbl 1052.92056 · doi:10.1007/BF02936164
[14] DOI: 10.1142/S0218339004001002 · Zbl 1100.92063 · doi:10.1142/S0218339004001002
[15] DOI: 10.1016/j.nonrwa.2008.01.027 · Zbl 1160.92041 · doi:10.1016/j.nonrwa.2008.01.027
[16] DOI: 10.1088/0951-7715/18/2/022 · Zbl 1078.34035 · doi:10.1088/0951-7715/18/2/022
[17] DOI: 10.1007/BF02462011 · Zbl 0533.92028 · doi:10.1007/BF02462011
[18] DOI: 10.1007/BF02459932 · Zbl 0762.92020 · doi:10.1007/BF02459932
[19] DOI: 10.1016/j.mbs.2006.03.006 · Zbl 1124.92055 · doi:10.1016/j.mbs.2006.03.006
[20] DOI: 10.1016/j.camwa.2008.01.006 · Zbl 1155.92347 · doi:10.1016/j.camwa.2008.01.006
[21] DOI: 10.1016/j.cnsns.2010.06.015 · Zbl 1221.34152 · doi:10.1016/j.cnsns.2010.06.015
[22] DOI: 10.1016/j.ecolmodel.2009.03.001 · doi:10.1016/j.ecolmodel.2009.03.001
[23] Liu M., Bull. Math. Biol.
[24] DOI: 10.1016/j.jtbi.2010.03.008 · doi:10.1016/j.jtbi.2010.03.008
[25] DOI: 10.1016/j.jtbi.2010.08.030 · doi:10.1016/j.jtbi.2010.08.030
[26] DOI: 10.1016/j.aml.2010.08.012 · Zbl 1206.34079 · doi:10.1016/j.aml.2010.08.012
[27] DOI: 10.1016/j.jmaa.2010.09.058 · Zbl 1214.34045 · doi:10.1016/j.jmaa.2010.09.058
[28] DOI: 10.1016/j.apm.2010.07.031 · Zbl 1205.60086 · doi:10.1016/j.apm.2010.07.031
[29] Butler G. C., Principles of Ecotoxicology (1979)
[30] Filov V. A., Quantitative Toxicology (1979)
[31] May R. M., Stability and Complexity in Model Ecosystems (2001)
[32] Arnold L., Stochastic Differential Equations: Theory and Applications (1974) · Zbl 0278.60039
[33] DOI: 10.1007/978-3-662-03620-4 · doi:10.1007/978-3-662-03620-4
[34] Fathilah A. R., Res. J. Microbio. 2 pp 381–
[35] DOI: 10.1111/j.1439-0418.2006.01088.x · doi:10.1111/j.1439-0418.2006.01088.x
[36] K. J. Macek, S. R. Petrocelli and B. H. Sleight III, Aquatic Toxicology, Am Soc Test Mat, eds. L. L. Marking and R. A. Kimerle (1979) pp. 251–268.
[37] Dugatkin L. A., Cooperation Among Animals: An Evolutionary Perspective (1997)
[38] DOI: 10.1007/s11425-007-0071-y · Zbl 1136.34324 · doi:10.1007/s11425-007-0071-y
[39] DOI: 10.1137/S0036144500378302 · Zbl 0979.65007 · doi:10.1137/S0036144500378302
[40] DOI: 10.1038/334563a0 · doi:10.1038/334563a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.