×

zbMATH — the first resource for mathematics

Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. (English) Zbl 1228.81078
Summary: The concept of steering was introduced by Schrödinger in 1935 as a generalization of the Einstein-Podolsky-Rosen paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and isotropic states) that steerable states form a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original Einstein-Podolsky-Rosen paradox.

MSC:
81P15 Quantum measurement theory, state operations, state preparations
81P40 Quantum coherence, entanglement, quantum correlations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRev.47.777 · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[2] E. Schrödinger, Proc. Cambridge Philos. Soc. 31 pp 553– (1935) ISSN: http://id.crossref.org/issn/0008-1981 · JFM 61.1561.03 · doi:10.1017/S0305004100013554
[3] E. Schrödinger, Proc. Cambridge Philos. Soc. 32 pp 446– (1936) ISSN: http://id.crossref.org/issn/0008-1981 · JFM 62.1613.03 · doi:10.1017/S0305004100019137
[4] E. Schrödinger, Ann. Phys. (Berlin) 79 pp 361– (1926) ISSN: http://id.crossref.org/issn/0003-3804 · JFM 52.0965.08 · doi:10.1002/andp.19263840404
[5] E. Schrodinger, Ann. Phys. (Berlin) 79 pp 489– (1926) ISSN: http://id.crossref.org/issn/0003-3804 · JFM 52.0966.01 · doi:10.1002/andp.19263840602
[6] E. Schrodinger, Ann. Phys. (Berlin) 80 pp 437– (1926) ISSN: http://id.crossref.org/issn/0003-3804 · JFM 52.0966.02 · doi:10.1002/andp.19263851302
[7] E. Schrodinger, Ann. Phys. (Berlin) 81 pp 109– (1926) ISSN: http://id.crossref.org/issn/0003-3804 · JFM 52.0966.03 · doi:10.1002/andp.19263861802
[8] DOI: 10.1088/0305-4470/21/13/016 · doi:10.1088/0305-4470/21/13/016
[9] DOI: 10.1023/A:1026056716397 · Zbl 1222.81051 · doi:10.1023/A:1026056716397
[10] DOI: 10.1103/PhysRevA.75.032110 · doi:10.1103/PhysRevA.75.032110
[11] DOI: 10.1007/s10702-006-1852-1 · Zbl 1099.81006 · doi:10.1007/s10702-006-1852-1
[12] J. S. Bell, Physics (Long Island City, N.Y.) 1 pp 195– (1964) ISSN: http://id.crossref.org/issn/0554-128X
[13] DOI: 10.1016/0375-9601(91)90805-I · doi:10.1016/0375-9601(91)90805-I
[14] DOI: 10.1103/PhysRevA.40.4277 · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[15] DOI: 10.1103/PhysRevLett.80.5239 · Zbl 0947.81005 · doi:10.1103/PhysRevLett.80.5239
[16] DOI: 10.1103/PhysRevA.40.913 · doi:10.1103/PhysRevA.40.913
[17] DOI: 10.1088/0305-4470/34/1/307 · Zbl 1053.81508 · doi:10.1088/0305-4470/34/1/307
[18] DOI: 10.1016/0375-9601(95)00214-N · Zbl 1020.81533 · doi:10.1016/0375-9601(95)00214-N
[19] DOI: 10.1103/PhysRevA.73.062105 · doi:10.1103/PhysRevA.73.062105
[20] DOI: 10.1103/PhysRevA.59.4206 · doi:10.1103/PhysRevA.59.4206
[21] DOI: 10.1103/PhysRevLett.88.040404 · Zbl 1243.81029 · doi:10.1103/PhysRevLett.88.040404
[22] DOI: 10.1103/PhysRevA.66.032316 · doi:10.1103/PhysRevA.66.032316
[23] K. Zhou, in: Optimal and Robust Control (1996) · Zbl 0999.49500
[24] DOI: 10.1103/PhysRevA.69.012304 · doi:10.1103/PhysRevA.69.012304
[25] DOI: 10.1103/PhysRevLett.92.127901 · Zbl 1267.81086 · doi:10.1103/PhysRevLett.92.127901
[26] DOI: 10.1103/PhysRevLett.96.150501 · Zbl 1228.81104 · doi:10.1103/PhysRevLett.96.150501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.