×

Localization and the interface between quantum mechanics, quantum field theory and quantum gravity. I: The two antagonistic localizations and their asymptotic compatibility. (English) Zbl 1228.81046

Summary: It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distiction between Born-localization in QM (which in the relativistic context changes its name to Newton-Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with a probability notion and projection operators, whereas the latter describes causal propagation in QFT and leads to thermal aspects of locally reduced finite energy states. The Born-Newton-Wigner localization in QFT is only applicable asymptotically and the covariant correlation between asymptotic in and out localization projectors is the basis of the existence of an invariant scattering matrix.In this first part of a two part essay the modular localization (the intrinsic content of field localization) and its philosophical consequences take the center stage. Important physical consequences of vacuum polarization will be the main topic of Part II [ibid. 41, No. 4, 293–308 (2010; Zbl 1228.81045)]. The present division into two semi-autonomous essays is the result of a partition and extension of an originally one-part manuscript.

MSC:

81P05 General and philosophical questions in quantum theory
81P40 Quantum coherence, entanglement, quantum correlations
81T99 Quantum field theory; related classical field theories
81V17 Gravitational interaction in quantum theory

Citations:

Zbl 1228.81045
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arageorgis, A.; Earman, J.; Ruetsche, L., Fulling non-uniqueness and the Unruh effect: A primer on some aspects of quantum field theory, Philosophy of Science, 70, 164-203 (2003)
[2] Araki, H., Multiple time analyticity of a quantum statistical state satisfying the KMS boundary condition, Publications of RIMS, Kyoto University Series A, 4, 361-378 (1968) · Zbl 0195.28701
[3] Babujian, H.; Karowski, M., International Journal of Modern Physics A, 1952, 34 (2004), and references therein · Zbl 1025.81027
[4] Bakamjian, B.; Thomas, L. H., Relativistic particle dynamics II, Physical Review, 92, 1300-1310 (1953) · Zbl 0052.22301
[5] Bischoff, M.; Meise, D.; Rehren, K.-H.; Wagner, I., Conformal quantum field theory in various dimensions, Bulgarian Journal of Physics, 36, 170-185 (2009) · Zbl 1202.81189
[6] Bisognano, J. J.; Wichmann, E. H., On the duality condition for quantum fields, Journal of Mathematical Physics, 17, 303-321 (1976)
[7] Borchers, H.-J., On revolutionizing quantum field theory with Tomota’s modular theory, Journal of Mathematical Physics, 41, 3604-3873 (2000) · Zbl 1031.81547
[8] Borchers, H. J.; Buchholz, D.; Schroer, B., Polarization-free generators and the S-matrix, Communications in Mathematical Physics, 219, 125-140 (2001) · Zbl 0985.81054
[9] Born, M., Quantum mechanics in impact processes, Zeitschrift für Physik, 38, 803-840 (1926)
[10] Bratteli, O.; Robinson, D. W., Operator algebras and quantum statistical mechanics I. II (1987), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York
[11] Brunetti, R.; Fredenhagen, K.; Verch, R., The generally covariant locality principle, Communications in Mathematical Physics, 237, 31-68 (2003) · Zbl 1047.81052
[12] Brunetti, R.; Guido, D.; Longo, R., Modular localization and Wigner particles, Reviews in Mathematical Physics, 14, 759-785 (2002) · Zbl 1033.81063
[13] Buchholz, D., Gauss’ Law and the infraparticle problem, Physics Letters B, 174, 331-334 (1986)
[14] Buchholz, D.; Dreyer, O.; Florig, M.; Summers, S. J., Geometric modular action and spacetime symmetry groups, Reviews in Mathematical Physics, 12, 475-560 (2000) · Zbl 1044.81082
[15] Buchholz, D.; Fredenhagen, K., Locality and the structure of particle states, Communications in Mathematical Physics, 84, 1-54 (1982) · Zbl 0498.46061
[16] Buchholz, D.; Summers, S., Quantum statistics and locality, Physics Letters A, 337, 17-21 (2005) · Zbl 1135.81353
[17] Buchholz, D.; Verch, R., Scaling algebras and renormalization group in algebraic quantum field theory, Reviews in Mathematical Physics, 10, 775-800 (1998) · Zbl 0916.46056
[18] Buchholz, D.; Wichmann, E. H., Causal independence and the energy-level density of states in local quantum field theory, Communications in Mathematical Physics, 106, 321-344 (1986) · Zbl 0626.46064
[19] Buchholz, D.; Yngvason, J., There are no causality problems for Fermi’s two atom system, Physical Review Letters, 73, 613-616 (1994) · Zbl 1020.81503
[20] Clifton, R.; Halvorson, H., Entanglement and open systems in algebraic quantum field theory, Studies and History and Philosophy of Modern Physics, 32, 1-24 (2001) · Zbl 1222.81108
[21] Clifton, R.; Halvorson, H., Are Rindler quanta real? Inequivalent particle concepts in quantum field theory, British Journal for the Philosophy of Science, 52, 417-470 (2001) · Zbl 1002.81003
[22] Coester, F., Scattering theory for relativistic particles, Helvetica Physica Acta, 38, 7-28 (1965) · Zbl 0138.45102
[23] Coester, F.; Polyzou, W. N., Physical Review D, 26, 1348-1379 (1982), and references therein
[24] Connes, A., Annales de L’Institut Fourier, 24, 121 (1974)
[25] Darrigol, O., The origin of quantized matter fields, Historical Studies in the Physical and Biological Sciences, 16, 198-253 (1986)
[26] Doplicher, S.; Longo, R., Standard and split inclusions of von Neumann algebras, Inventiones Mathematicae, 75, 493-536 (1984) · Zbl 0539.46043
[27] Duetsch, M.; Rehren, K.-H., A comment on the dual field in the AdS-CFT correspondence, Letters in Mathematical Physics, 62, 171-188 (2002) · Zbl 1031.81055
[28] Duetsch, M.; Schroer, B., Massive vectormesons and gauge theory, Journal of Physics A, 33, 4317-4356 (2000) · Zbl 1005.81058
[29] Dybalski, W., Haag-Ruelle scattering theory in the presence of massless particles, Letters in Mathematical Physics, 72, 27-38 (2005) · Zbl 1115.81050
[30] Dybalski, W. (2009). Coincidence arrangements of local observables and uniqueness of the vacuum in QFT; Dybalski, W. (2009). Coincidence arrangements of local observables and uniqueness of the vacuum in QFT · Zbl 1178.81161
[31] Epstein, H.; Glaser, V., The role of locality in perturbation theory, Annals de l’institute Henri Poincaré A, XIX, 211-295 (1973) · Zbl 1216.81075
[32] Fassarella, L.; Schroer, B., Wigner particle theory and local quantum physics, Journal of Physics A, 35, 9123-9164 (2002) · Zbl 1044.81084
[33] Fermi, E., Quantum theory of radiation, Reviews of Modern Physics, 4, 87-132 (1932) · JFM 58.1351.04
[34] Fleming, G., Reeh-Schlieder meets Newton-Winger, Philosophy of Science, 67, 495 (2001)
[35] Fraser, D., The fate of ‘particles’ in quantum field theories with interactions, Studies in History and Philosophy of Physics, 19, 841-859 (2008) · Zbl 1223.81027
[36] Furry, W. H.; Oppenheimer, J. R., On the theory of the electron and positive, Physical Review, 45, 245-262 (1934) · Zbl 0008.38006
[37] Glaser, V.; Lehmann, H.; Zimmermann, W., Field operators and retarded functions, Nuovo Cimento, 6, 1122-1145 (1957) · Zbl 0078.20103
[38] Glimm, J., &Jaffe, A. (1972). Boson quantum field models. In R.F. Streater (Ed.), Mathematics in contemporary Physics; Glimm, J., &Jaffe, A. (1972). Boson quantum field models. In R.F. Streater (Ed.), Mathematics in contemporary Physics · Zbl 0191.27101
[39] Guido, D.; Longo, R.; Wiesbrock, H. W., Extensions of conformal nets and superselection structures, Communications in Mathematical Physics, 192, 217-244 (1998) · Zbl 0993.46035
[40] Haag, R., Local quantum physics (1996), Springer Verlag: Springer Verlag Berlin
[41] Haag, R.; Swieca, J. A., When does a quantum field theory describe particles?, Communications in Mathematical Physics, 1, 308-320 (1965) · Zbl 0149.23803
[42] Halvorson, H., Reeh-Schlieder defeats Newton-Wigner: On alternative localization schemes in quantum field theory, Philosophy of Science, 68, 111-133 (2001)
[43] Hawking, S. W., Particle creation by black holes, Communications in Mathematical Physics, 43, 199-221 (1975) · Zbl 1378.83040
[44] Hegerfeldt, G. C., Causality problems in Fermi’s two atom system, Physical Review Letter, 72, 596-599 (1994) · Zbl 1001.81502
[45] Heisenberg, W., Über die mit der Entstehung von Materie aus Strahlung verknüpften Ladungsschwankungen, Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, 86, 317-322 (1934) · JFM 60.0791.04
[46] Hollands, S.; Wald, R. M., Local Wick polynomials and time-ordered quantum fields of local quantum fields in curved spacetime, Communications of Mathematical Physics, 223, 289-326 (2001) · Zbl 0989.81081
[47] Jacobs, S. (2009). Eichbrücken in der klassischen Feldtheorie; Jacobs, S. (2009). Eichbrücken in der klassischen Feldtheorie
[48] Joerss, M., The construction of pointlike charged fields from conformal Haag-Kastler nets, Letters in Mathematical Physics, 38, 257-374 (1996)
[49] Jordan, P., Talks and discussions of the theoretical-physical conference in Kharkov (May 19-25, 1929), Physikalische Zeitschrift, XXX, 700-725 (1929)
[50] Kaehler, R.; Wiesbrock, H.-P., Modular theory and the reconstruction of four-dimensional quantum field theories, Journal of Mathematical Physics, 42, 74-86 (2001) · Zbl 1013.81033
[51] Keyl, M., Matsui, T., Schlingemann, D., & Werner, R.F. (2006). Entanglement, Haag property and type properties of infinite quantum spin chains. Review of Mathematical Physics; Keyl, M., Matsui, T., Schlingemann, D., & Werner, R.F. (2006). Entanglement, Haag property and type properties of infinite quantum spin chains. Review of Mathematical Physics · Zbl 1113.81025
[52] Keyl, M., Schlingemann, D., & Werner, R.F. (2003). Infinitely entangled states. Quantum Information and Computation; Keyl, M., Schlingemann, D., & Werner, R.F. (2003). Infinitely entangled states. Quantum Information and Computation · Zbl 1152.81754
[53] Langerholc, J.; Schroer, B., Can current operators determine a complete theory?, Communications in Mathematical Physics, 4, 123-136 (1967)
[54] Lechner, G. (2006). On the construction of quantum field theories with factorizing S-matrices; Lechner, G. (2006). On the construction of quantum field theories with factorizing S-matrices · Zbl 1163.81010
[55] Lechner, G., An existence proof for interacting quantum field theories with a factorizing S-matrix, Communications in Mathematical Physics, 227, 821-860 (2008), arXiv.org/abs/math-ph/0601022 · Zbl 1163.81010
[56] Licht, A. L., Local states, Journal of Mathematical Physics, 7, 1569-1656 (1966) · Zbl 0163.22003
[57] Longo, R., On perturbed derivations of C* algebras. Pacific Journal of Mathematics, 70, 199 (1978)
[58] Longo, R., Martinetti, P., & Rehren, K.-H. (2009). Geometric modular action for disjoint intervals and boundary conformal field theory; Longo, R., Martinetti, P., & Rehren, K.-H. (2009). Geometric modular action for disjoint intervals and boundary conformal field theory · Zbl 1190.81121
[59] Lowe, D. A., Causal properties of free string field theory, Physics Letters B, 326, 223-230 (1994)
[60] Martinec, E., The light cone in string theory, Classical and Quantum Gravity, 10, 187-192 (1993)
[61] Mermin, N. D., What is quantum mechanics try to tell us?, American Journal of Physics, 66, 752-767 (1998)
[62] Mund, J., Modular localization of massive particles with “any” spin in \(d=2+1\) dimensions, Journal of Mathematical Physics, 44, 2037-2057 (2003) · Zbl 1062.81103
[63] Mund, J.; Schroer, B.; Yngvason, J., String-localized quantum fields and modular localization, Communications in Mathematical Physics, 268, 621-672 (2006) · Zbl 1123.81039
[64] Newton, T. D.; Wigner, E. P., Localized states for elementary systems, Review of Modern Physics, 21, 400-428 (1949) · Zbl 0036.26704
[65] Polyzou, W. N., Equivalent Hamiltonians, Journal of Mathematical Physics, 43, 6024-6038 (2002), arXiv:nucl-th/0201013
[66] Porrmann, M., Particle weights and their disintegration II, Communications in Mathematical Physics, 248, 305-333 (2004) · Zbl 1061.81045
[67] Ruetsche, L., Intrinsically mixed states: An appreciation, Studies and History and Philosophy of Modern Physics, 35, 221-239 (2004) · Zbl 1222.81189
[68] Schroer, B. (unpublished-a). A critical look at 50 years particle theory from the perspective of the crossing property; Schroer, B. (unpublished-a). A critical look at 50 years particle theory from the perspective of the crossing property · Zbl 1222.81024
[69] Schroer, B. (unpublished-b) A note on infraparticles and unparticles; Schroer, B. (unpublished-b) A note on infraparticles and unparticles
[70] Schroer, B. (unpublished-c) Particle physics in the 60s and 70s and the legacy of contributions by J. A. Swieca; Schroer, B. (unpublished-c) Particle physics in the 60s and 70s and the legacy of contributions by J. A. Swieca
[71] Schroer, B., Modular constructions for chiral theory on the circle, IJMP B, 6, 2041-2063 (1992)
[72] Schroer, B., Modular localization and the \(d=1+1\) formfactor program, Annals of Physics, 295, 190-223 (1999) · Zbl 0989.81057
[73] Schroer, B., Uniqueness of inverse scattering problem in local quantum physics, Annals of Physics, 307, 421-437 (2003), arXiv:hep-th/0106066 · Zbl 1044.81132
[74] Schroer, B.; Wiesbrock, H.-W., Modular theory and geometry, Reviews in Mathematical Physics, 12, 139-158 (2000) · Zbl 0969.81035
[75] Sewell, G. L., PCT and gravitationally induced, Annals of Physics, 141, 201-224 (1982)
[76] Sokolov, N. S., Interacting relativistic particles, Doklady Akademii Nauk USSR, 233, 575-592 (1977)
[77] Steinmann, O., A Jost-Schroer theorem for string fields, Communications in Mathematical Physics, 87, 259-264 (1982) · Zbl 0514.35076
[78] Steinmann, O., Perturbative QED in terms of gauge invariant fields, Annals of Physics, 157, 232-254 (1984)
[79] Streater, R. F.; Wightman, A. S., PCT, Spin and Statistics and all that (1964), Benjamin: Benjamin New York · Zbl 0135.44305
[80] Summers, S. J. (2005). Tomita-Takesaki modular theory; Summers, S. J. (2005). Tomita-Takesaki modular theory
[81] Summers, S. J. (2008). Yet more ado about nothing: The remarkable relativistic vacuum state; Summers, S. J. (2008). Yet more ado about nothing: The remarkable relativistic vacuum state · Zbl 1234.81098
[82] Summers, S. J. (2009). Subsystems and independence in microscopic physics; Summers, S. J. (2009). Subsystems and independence in microscopic physics · Zbl 1228.81048
[83] Summers, S.; Werner, R., Bell’s inequalities and quantum field theory II: Bell’s inequalities are maximally violated in the vacuum, Journal of Mathematical Physics, 28, 2440-2456 (1987) · Zbl 0648.46067
[84] Takesaki, M., Theory of operator algebras I (1979), Springer: Springer Berlin, Heidelberg, New York · Zbl 0990.46034
[85] Unruh, W. G., Notes on black hole evaporation, Physical Review D, 14, 870-892 (1976)
[86] Wald, R.E. (2006). The history and present status of quantum field theory in curved spacetime; Wald, R.E. (2006). The history and present status of quantum field theory in curved spacetime
[87] Weinberg, S., The quantum theory of fields I (1995), Cambridge University Press
[88] Weinberg, S. (1997). What is quantum field theory and what did we think it is; Weinberg, S. (1997). What is quantum field theory and what did we think it is
[89] Werner, R., Local preparability of states and the split property in quantum field theory, Letters in Mathematical Physics, 13, 325-329 (1987) · Zbl 0649.46063
[90] Wiesbrock, H.-W., Halfsided modular inclusions of von Neumann algebras, Communications in Mathematical Physics, 157, 83-92 (1993) · Zbl 0799.46073
[91] Wiesbrock, H.-W., Symmetries and modular intersections of von Neumann algebras, Letters in Mathematical Physics, 39, 203-212 (1997) · Zbl 0866.46038
[92] Wiesbrock, H.-W., Modular intersections of von Neumann algebras in quantum field theory, Communications in Mathematical Physics, 193, 269-285 (1998) · Zbl 0908.46039
[93] Yenni, D.; Frautschi, S.; Suura, H., The infrared divergence phenomena and high energy processes, Annals of Physics, 13, 370-462 (1961)
[94] Yngvason, J., The role of type III factors in quantum field theory, Reports in Mathematical Physics, 55, 135-147 (2005), arXiv:math-ph/0411058 · Zbl 1140.81427
[95] Zimmermann, W., Local operator products and renormalization in quantum field theory, Brandeis Summer Institute in Theoretical Physics Lectures, 399-589 (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.