×

zbMATH — the first resource for mathematics

A large deformation, rotation-free, isogeometric shell. (English) Zbl 1228.74077
Summary: Conventional finite shell element formulations use rotational degrees of freedom to describe the motion of the fiber in the Reissner-Mindlin shear deformable shell theory, resulting in an element with five or six degrees of freedom per node. These additional degrees of freedom are frequently the source of convergence difficulties in implicit structural analyses, and, unless the rotational inertias are scaled, control the time step size in explicit analyses. Structural formulations that are based on only the translational degrees of freedom are therefore attractive. Although rotation-free formulations using \(C^{0}\) basis functions are possible, they are complicated in comparison to their \(C^{1}\) counterparts. A \(C^{k}\)-continuous, \(k\geq 1\), NURBS-based isogeometric shell for large deformations formulated without rotational degrees of freedom is presented here. The effect of different choices for defining the shell normal vector is demonstrated using a simple eigenvalue problem, and a simple lifting operator is shown to provide the most accurate solution. Higher order elements are commonly regarded as inefficient for large deformation analyses, but a traditional shell benchmark problem demonstrates the contrary for isogeometric analysis. The rapid convergence of the quadratic element is demonstrated for the NUMISHEET S-rail benchmark metal stamping problem.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
65D17 Computer-aided design (modeling of curves and surfaces)
Software:
LS-DYNA; ISOGAT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akkerman, I.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Computational mechanics, 41, 371-378, (2008) · Zbl 1162.76355
[2] Auricchio, F.; Beirao da Veiga, L.; Buffa, A.; Lovadina, C.; Reali, A.; Sangalli, G., A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation, Computer methods in applied mechanics and engineering, 197, 160-172, (2007) · Zbl 1169.74643
[3] Auricchio, F.; Da Veiga, L.B.; Hughes, T.J.R.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Mathematical models and methods in applied sciences, 20, 11, 2075-2107, (2010) · Zbl 1226.65091
[4] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Evans, J.A.; Hughes, T.J.R.; Lipton, S.; Scott, M.A.; Sederberg, T.W., Isogeometric analysis using T-splines, Computer methods in applied mechanics and engineering, 199, 5-8, 229, (2010) · Zbl 1227.74123
[5] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Computer methods in applied mechanics and engineering, 197, 173-201, (2007) · Zbl 1169.76352
[6] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid – structure interaction: theory, algorithms, and computations, Computational mechanics, 43, 3-37, (2008) · Zbl 1169.74015
[7] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid – structure interaction analysis with applications to arterial blood flow, Computational mechanics, 38, 310-322, (2006) · Zbl 1161.74020
[8] Bazilevs, Y.; Hughes, T.J.R., NURBS-based isogeometric analysis for the computation of flows about rotating components, Computational mechanics, 43, 143-150, (2008) · Zbl 1171.76043
[9] Belytschko, T.; Lin, J.I.; Tsay, C.S., Explicit algorithms for the nonlinear dynamics of shells, Computer methods in applied mechanics and engineering, 42, 225-251, (1984) · Zbl 0512.73073
[10] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Computer methods in applied mechanics and engineering, 99, 2356-2394, (1992) · Zbl 0763.73052
[11] Benson, D.J., Stable time step estimation for multi-material Eulerian hydrocodes, Computer methods in applied mechanics and engineering, 167, 191-205, (1998) · Zbl 0945.74064
[12] D.J. Benson, Y. Bazilevs, E. De Luycker, M.-C. Hsu, M. Scott, T.J.R. Hughes, T. Belytschko, A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM, International Journal for Numerical Methods in Engineering, in press. · Zbl 1197.74177
[13] D.J. Benson, Y. Bazilevs, M.C. Hsu, T.J.R. Hughes, Isogeometric shell analysis: the Reissner-Mindlin shell, Computer Methods in Applied Mechanics and Engineering (2009). doi:10.1016/j.cma.2009.05.011. · Zbl 1227.74107
[14] Cirak, F.; Ortiz, M., Fully C1-conforming subdivision elements for finite deformation thin shell analysis, International journal of numerical methods in engineering, 51, 813-833, (2001) · Zbl 1039.74045
[15] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin shell analysis, International journal of numerical methods in engineering, 47, 2039-2072, (2000) · Zbl 0983.74063
[16] Cirak, F.; Scott, M.J.; Antonsson, E.K.; Ortiz, M.; Schröder, P., Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Computer-aided design, 34, 137-148, (2002)
[17] Cottrell, J.A.; Hughes, T.J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley · Zbl 1378.65009
[18] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Computer methods in applied mechanics and engineering, 195, 5257-5297, (2006) · Zbl 1119.74024
[19] M.R. Dörfel, B. Jüttler, B. Simeon, Adaptive isogeometric analysis by local h-refinement with T-splines, Computer Methods in Applied Mechanics and Engineering (2009). doi:10.1016/j.cma.2008.07.012.
[20] R. Dick, Personal communication, Alcoa, 2009.
[21] Elguedj, T.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R., \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Computer methods in applied mechanics and engineering, 197, 33-40, (2008) · Zbl 1194.74518
[22] Flanagan, D.P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, International journal for numerical methods in engineering, 17, 679-706, (1981) · Zbl 0478.73049
[23] Gresho, P.M.; Sani, R.L., Incompressible flow and the finite element method, (1998), Wiley New York, NY · Zbl 0941.76002
[24] J.O. Hallquist, LS-DYNA Theoretical Manual, Technical Report, Livermore Software Technology Corporation, 1998.
[25] Hill, R., A theory of yielding and plastic flow of anisotropic metals, Proceedings of the royal society of London, series A, 193, 281-297, (1948) · Zbl 0032.08805
[26] Hughes, T.J.R., The finite element method, linear static and dynamic finite element analysis, (2000), Dover
[27] Hughes, T.J.R.; Liu, W.K., Nonlinear finite element analysis of shells: part I. three-dimensional shells, Computer methods in applied mechanics and engineering, 26, 331-362, (1981) · Zbl 0461.73061
[28] Hughes, T.J.R.; Pister, K.S.; Taylor, R.L., Implicit – explicit finite elements in nonlinear transient analysis, Computer methods in applied mechanics and engineering, 17/18, 159-182, (1979) · Zbl 0413.73074
[29] Hughes, T.J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Computer methods in applied mechanics and engineering, 199, 5-8, 301-313, (2010) · Zbl 1227.65029
[30] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Computer methods in applied mechanics and engineering, 194, 4135-4195, (2005) · Zbl 1151.74419
[31] Hughes, T.J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Computer methods in applied mechanics and engineering, 197, 4104-4124, (2008) · Zbl 1194.74114
[32] B.M. Irons, Applications of a Theorem on Eigenvalues to Finite Element Problems, Technical Report CR/132/70, University of Wales, Department of Civil Engineering, Swansea, UK, 1970.
[33] Kiendl, J.; Bazilevs, Y.; Hsu, M.-C.; Wnchner, R.; Bletzinger, K.-U., The bending strip method for isogeometric analysis of kirchhoff – love shell structures comprised of multiple patches, Computer methods in applied mechanics and engineering, 199, 37-40, 2403-2416, (2010) · Zbl 1231.74482
[34] J.K. Lee, G.L. Kinzel, R.H. Wagoner, in: NUMISHEET 96 Third International Conference: Numerical Simulation of 3-D Sheet Metal Forming Processes Verification of Simulations and Experiments, Ohio State University, 1996.
[35] Morino, L.; Leech, J.W.; Wittmer, E.A., An improved numerical calculation technique for large elastic – plastic transient deformations of thin shells: part 2 - evaluation and applications, Journal of applied mechanics, 429-435, (1971)
[36] Piegl, L.; Tiller, W., The NURBS book (monographs in visual communication), (1997), Springer-Verlag New York
[37] Schoenfeld, S.; Benson, D.J., Quickly convergent integration methods for plane stress plasticity, Communications in applied numerical methods, 9, 293-305, (1993) · Zbl 0777.73071
[38] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (2000), Springer New York · Zbl 0934.74003
[39] Wall, W.A.; Frenzel, M.A.; Cyron, C., Isogeometric structural shape optimization, Computer methods in applied mechanics and engineering, 197, 2976-2988, (2008) · Zbl 1194.74263
[40] Wikipedia.org. <http://www.en.wikipedia.org/wiki/>.
[41] Wilkinson, J.H., The algebraic eigenvalue problem, (1965), Oxford University Press · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.