×

Application of Legendre wavelets for solving fractional differential equations. (English) Zbl 1228.65253

Summary: We develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelet approximations. The properties of Legendre wavelets are first presented. These properties are then utilized to reduce the fractional ordinary differential equations (FODEs) to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. Results show that this technique can solve the linear and nonlinear fractional ordinary differential equations with negligible error compared to the exact solution.

MSC:

65T60 Numerical methods for wavelets
34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
45J05 Integro-ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bagley, R. L.; Torvik, P. J., Fractional calculus: a different approach to the analysis of viscoelastically damped structures, AIAA J., 21, 5, 741-748 (1983) · Zbl 0514.73048
[2] Gaul, L.; Klein, P.; Kempfle, S., Impulse response function of an oscillator with fractional derivative in damping description, Mech. Res. Commun., 16, 5, 297-305 (1989)
[3] Caputo, M., Linear models of dissipation whose Q is almost frequency independent. Part II, J. Roy. Austral. Soc., 13, 529-539 (1967)
[4] Debnath, L., Recent applications of fractional calculus to science and engineering, Int. J. Math. Sci., 54, 3413-3442 (2003) · Zbl 1036.26004
[5] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1999), Academic Press: Academic Press New York · Zbl 0924.34008
[6] Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific Pub. Co. Pte. Ltd: World Scientific Pub. Co. Pte. Ltd Singapore · Zbl 0998.26002
[7] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56, 80-90 (2006) · Zbl 1086.65087
[8] Tadjeran, C.; Meerschaert, M. M., A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220, 813-823 (2007) · Zbl 1113.65124
[9] Lynch, V. E.; Carreras, B. A.; del-Castillo-Negrete, D.; Ferriera-Mejias, K. M.; Hicks, H. R., Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192, 406-421 (2003) · Zbl 1047.76075
[10] Momani, S.; Al-Khaled, K., A numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput., 162, 3, 1351-1365 (2005) · Zbl 1063.65055
[11] Momani, S., An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simulation, 70, 2, 110-118 (2005) · Zbl 1119.65394
[12] Momani, S., Non-perturbative analytical solutions of the space- and time-fractional Burgers equations, Chaos Solitons Fractals, 28, 4, 930-937 (2006) · Zbl 1099.35118
[13] Momani, S.; Odibat, Z., Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177, 488-494 (2006) · Zbl 1096.65131
[14] Odibat, Z.; Momani, S., Approximate solutions for boundary value problems of time-fractional wave equation, Appl. Math. Comput., 181, 1351-1358 (2006) · Zbl 1110.65068
[15] Odibat, Z.; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7, 1, 27-34 (2006) · Zbl 1401.65087
[16] Momani, S.; Odibat, Z., Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 31, 5, 1248-1255 (2007) · Zbl 1137.65450
[17] Momani, S.; Odibat, Z., Numerical approach to differential equations of fractional order, J. Comput. Appl. Math., 207, 1, 96-110 (2007) · Zbl 1119.65127
[18] Odibat, Z.; Momani, S., Numerical methods for solving nonlinear partial differential equations of fractional order, Appl. Math. Modelling, 32, 1, 28-39 (2008) · Zbl 1133.65116
[19] Odibat, Z.; Momani, S., Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, 36, 1, 167-174 (2008) · Zbl 1152.34311
[20] Jafari, H.; Kadkhoda, N.; Tajadodi, H.; Hosseini Matikolai, S. A., Homotopy perturbation pade technique for solving fractional Riccati differential equations, Int. J. Nonlinear Sci. Numer. Simul., 11, 271-275 (2010) · Zbl 1401.34011
[21] Momani, S.; Odibat, Z., Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A, 365, 5-6, 345-350 (2007) · Zbl 1203.65212
[22] Chowdhury, M. S.; Hashim, I.; Momani, S., The multistage homotopy perturbation method: a powerful scheme for handling the Lorenz system, Chaos Solitons Fractals, 40, 4, 1929-1937 (2009) · Zbl 1198.65135
[23] Erturk, V.; Momani, S.; Odibat, Z., Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 13, 8, 1642-1654 (2008) · Zbl 1221.34022
[24] Odibat, Z.; Momani, S., A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21, 2, 194-199 (2008) · Zbl 1132.35302
[25] Momani, S.; Odibat, Z.; Erturk, V., Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation, Phys. Lett. A, 370, 5-6, 379-387 (2007) · Zbl 1209.35066
[26] Momani, S.; Odibat, Z., A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor’s formula, J. Comput. Appl. Math., 220, 1-2, 85-95 (2008) · Zbl 1148.65099
[27] Cang, J.; Tan, Y.; Xu, H.; Liao, S. J., Series solutions of non-linear Riccati differential equations with fractional order, Chaos Solitons Fractals, 40, 1, 1-9 (2009) · Zbl 1197.34006
[28] Hashim, I.; Abdulaziz, O.; Momani, S., Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14, 3, 674-684 (2009) · Zbl 1221.65277
[29] Kai, Diethelm; Guido, Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms, 16, 231-253 (1997) · Zbl 0926.65070
[30] Luchko, Yu; Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam., 24, 2, 207-233 (1999) · Zbl 0931.44003
[31] Chui, C. K., Wavelets: A Mathematical Tool for Signal Analysis (1997), SIAM: SIAM Philadelphia, PA · Zbl 0903.94007
[32] Beylkin, G.; Coifman, R.; Rokhlin, V., Fast wavelet transforms and numerical algorithms, I, Commun. Pure Appl. Math., 44, 141-183 (1991) · Zbl 0722.65022
[33] Gu, J. S.; Jiang, W. S., The Haar wavelets operational matrix of integration, Int. J. Syst. Sci., 27, 623-628 (1996) · Zbl 0875.93116
[34] Razzaghi, M.; Yousefi, S., The Legendre wavelets operational matrix of integration, Int. J. Syst. Sci., 32, 495-502 (2001) · Zbl 1006.65151
[35] Diethelm, K. J.; Ford, N. J., Numerical solution of the Bagley-Torvik equation, BIT, 42, 490-507 (2004) · Zbl 1035.65067
[36] Momani, S.; Shawagfeh, N., Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput., 182, 2, 1083-1092 (2006) · Zbl 1107.65121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.