×

zbMATH — the first resource for mathematics

Parameterization of computational domain in isogeometric analysis: methods and comparison. (English) Zbl 1228.65232
Summary: Parameterization of computational domain plays an important role in isogeometric analysis as mesh generation in finite element analysis. In this paper, we investigate this problem in the 2D case, i.e., how to parametrize the computational domains by planar B-spline surface from the given CAD objects (four boundary planar B-spline curves). Firstly, two kinds of sufficient conditions for injective B-spline parameterization are derived with respect to the control points. Then we show how to find good parameterization of computational domain by solving a constraint optimization problem, in which the constraint condition is the injectivity sufficient conditions of planar B-spline parameterization, and the optimization term is the minimization of quadratic energy functions related to the first and second derivatives of planar B-spline parameterization. By using this method, the resulted parameterization has no self-intersections, and the isoparametric net has good uniformity and orthogonality. After introducing a posteriori error estimation for isogeometric analysis, we propose \(r\)-refinement method to optimize the parameterization by repositioning the inner control points such that the estimated error is minimized. Several examples are tested on isogeometric heat conduction problem to show the effectiveness of the proposed methods and the impact of the parameterization on the quality of the approximation solution. Comparison examples with known exact solutions are also presented.

MSC:
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65D17 Computer-aided design (modeling of curves and surfaces)
Software:
ISOGAT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aigner, M.; Heinrich, C.; Jüttler, B.; Pilgerstorfer, E.; Simeon, B.; Vuong, A.-V., Swept volume parametrization for isogeometric analysis, (), 19-44 · Zbl 1253.65182
[2] Ainswort, M.; Oden, J., A posteriori error estimation in finite element analysis, (2002), Wiley-Interscience New York
[3] Auricchio, F.; da Veiga, L.B.; Buffa, A.; Lovadina, C.; Reali, A.; Sangalli, G., A fully locking-free isogeometric approach for plane linear elasticity problems: A stream function formulation, Comput. methods appl. mech. engrg., 197, 160-172, (2007) · Zbl 1169.74643
[4] Bazilevs, Y.; Beirao de Veiga, L.; Cottrell, J.A.; Hughes, T.J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for refined meshes, Math. models methods appl. sci., 6, 1031-1090, (2006) · Zbl 1103.65113
[5] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid structure interaction: theory, algorithms, and computations, Comput. mech., 43, 3-37, (2008) · Zbl 1169.74015
[6] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid structure interaction analysis with applications to arterial blood flow, Comput. mech., 38, 310-322, (2006) · Zbl 1161.74020
[7] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Evans, J.; Hughes, T.J.R.; Lipton, S.; Scott, M.A.; Sederberg, T.W., Isogeometric analysis using T-splines, Comput. methods appl. mech. engrg., 199, 5-8, 229-263, (2010) · Zbl 1227.74123
[8] Brakhage, K.H.; Lamby, Ph., Application of B-spline techniques to the modeling of airplane wings and numerical grid generation, Comput. aided geom. design, 25, 738-750, (2008) · Zbl 1172.76323
[9] Burkhart, D.; Hamann, B.; Umlauf, G., Iso-geometric analysis based on catmull – clark subdivision solids, Comput. graphics forum, 29, 5, 1575-1584, (2010)
[10] Cao, W.; Huang, W.; Russell, R.D., An r-adaptive finite element method based upon moving mesh pdes, J. comput. phys., 149, 221-244, (1999) · Zbl 0923.65062
[11] Celniker, G.; Gossard, D., Deformable curve and surface finite elements for free-form shape design, Comput. graphics (proc. SIGGRAPH’91), 25, 4, 257-266, (1991)
[12] Cohen, E.; Martin, T.; Kirby, R.M.; Lyche, T.; Riesenfeld, R.F., Analysis-aware modeling understanding quality considerations in modeling: for isogeometric analysis, Comput. methods appl. mech. engrg., 199, 5-8, 334-356, (2010) · Zbl 1227.74109
[13] Cottrell, J.A.; Hughes, T.J.R.; Reali, A., Studies of refinement and continuity in isogeometric analysis, Comput. methods appl. mech. engrg., 196, 4160-4183, (2007) · Zbl 1173.74407
[14] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. methods appl. mech. engrg., 195, 5257-5296, (2006) · Zbl 1119.74024
[15] Dörfel, M.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. methods appl. mech. engrg., 199, 5-8, 264-275, (2010) · Zbl 1227.74125
[16] R. Duvigneau, An introduction to isogeometric analysis with application to thermal conduction, INRIA Research Report RR-6957, June 2009.
[17] Elguedj, T.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R., \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. methods appl. mech. engrg., 197, 2732-2762, (2008) · Zbl 1194.74518
[18] Evans, J.A.; Bazilevs, Y.; Babuka, I.; Hughes, T.J.R., n-widths, supinfs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. methods appl. mech. engrg., 198, 1726-1741, (2009) · Zbl 1227.65093
[19] Farin, G., Curves and surfaces for computer aided geometric design: A practical guide, (2001), Morgan Kaufmann San Mateo, CA
[20] Farin, G.; Hansford, D., Discrete coons patches, Comput. aided geom. design, 16, 7, 691-700, (1999) · Zbl 0997.65033
[21] Gill, P.; Murray, W.; Wright, M., Practical optimization, (1981), Springer
[22] Gomez, H.; Calo, V.M.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of the cahn – hilliard phase-field model, Comput. methods appl. mech. engrg., 197, 4333-4352, (2008) · Zbl 1194.74524
[23] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. methods appl. mech. engrg., 194, 39-41, 4135-4195, (2005) · Zbl 1151.74419
[24] Hughes, T.J.R.; Realli, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. methods appl. mech. engrg., 197, 4104-4124, (2008) · Zbl 1194.74114
[25] Hughes, T.J.R.; Realli, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. methods appl. mech. engrg., 199, 5-8, 301-313, (2010) · Zbl 1227.65029
[26] Kestelman, H., Mappings with non-vanishing Jacobian, Amer. math. monthly, 78, 662-663, (1971) · Zbl 0212.40602
[27] Kim, H.J.; D Seo, Y.; K Youn, S., Isogeometric analysis for trimmed CAD surfaces, Comput. methods appl. mech. engrg., 198, 37-40, 2982-2995, (2009) · Zbl 1229.74131
[28] Martin, T.; Cohen, E.; Kirby, R.M., Volumetric parameterization and trivariate B-spline Fitting using harmonic functions, Comput. aided geom. design, 26, 6, 648-664, (2009) · Zbl 1205.65094
[29] McRae, D.S., r-refinement grid adaptation algorithms and issues, Comput. methods appl. mech. engrg., 189, 1161-1182, (2000) · Zbl 0995.76078
[30] Morken, K.M., Some identities for products and degree raising of splines, Constructive approx., 7, 195-208, (1991) · Zbl 0732.41004
[31] T. Nguyen, B. Jüttler, Using approximate implicitization for domain parameterization in isogeometric analysis, in: International Conference on Curves and Surfaces, Avignon, France, 2010.
[32] G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Optimal analysis-aware parameterization of computational domain in isogeometric analysis, in: Proceedings of Geometric Modeling and Processing (GMP 2010), 2010, pp. 236-254. · Zbl 1228.65232
[33] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C.; Hughes, T.J.R., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. methods appl. mech. engrg., 196, 2943-2959, (2007) · Zbl 1121.76076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.