×

zbMATH — the first resource for mathematics

A critical synthesis of thermophysical characteristics of nanofluids. (English) Zbl 1227.80022
Summary: A critical synthesis of the variants within the thermophysical properties of nanofluids is presented in this work. The experimental results for the effective thermal conductivity and viscosity reported by several authors are in disagreement. Theoretical and experimental studies are essential to clarify the discrepancies in the results and in proper understanding of heat transfer enhancement characteristics of nanofluids. At room temperature, it is illustrated that the results of the effective thermal conductivity and viscosity of nanofluids can be estimated using the classical equations at low volume fractions. However, the classical models fail to estimate the effective thermal conductivity and viscosity of nanofluids at various temperatures. This study shows that it is not clear which analytical model should be used to describe the thermal conductivity of nanofluids. Additional theoretical and experimental research studies are required to clarify the mechanisms responsible for heat transfer enhancement in nanofluids. Correlations for effective thermal conductivity and viscosity are synthesized and developed in this study in terms of pertinent physical parameters based on the reported experimental data.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76T20 Suspensions
80-05 Experimental work for problems pertaining to classical thermodynamics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Choi, S. U. S.: Nanofluids: from vision to reality through research, J. heat transfer 131, 1-9 (2009)
[2] Wong, K. V.; Leon, O.: Applications of nanofluids: current and future, Adv. mech. Eng. 2010, 1-11 (2010)
[3] Bianco, V.; Chiacchio, F.; Manca, O.; Nardini, S.: Numerical investigation of nanofluids forced convection in circular tubes, Appl. therm. Eng. 29, 3632-3642 (2009)
[4] Shafahi, M.; Bianco, V.; Vafai, K.; Manca, O.: Thermal performance of flat-shaped heat pipes using nanofluids, Int. J. Heat mass transfer 53, 1438-1445 (2010) · Zbl 1183.80057
[5] Shafahi, M.; Bianco, V.; Vafai, K.; Manca, O.: An investigation of the thermal performance of cylindrical heat pipes using nanofluids, Int. J. Heat mass transfer 53, 376-383 (2010) · Zbl 1180.80043
[6] Khanafer, K.; Vafai, K.; Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat mass transfer 46, 3639-3653 (2003) · Zbl 1042.76586
[7] Khaled, A. R. A.; Vafai, K.: Heat transfer enhancement through control of thermal dispersion effects, Int. J. Heat mass transfer 48, 2172 (2005) · Zbl 1189.76169
[8] J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, in: 1996 Fall Meeting of the Materials Research Society (MRS), Boston, USA.
[9] Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. phys. Lett. 78, 718-720 (2001)
[10] Jang, S. P.; Choi, S. U. S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. phys. Lett. 84, 4316-4318 (2004)
[11] S. Lee, S.U.S. Choi, Application of metallic nanoparticle suspensions in advanced cooling systems, in: 1996 International Mechanical Engineering Congress and Exhibition, Atlanta, USA.
[12] Ali, A.; Vafai, K.; Khaled, A. -R.A.: Comparative study between parallel and counter flow configurations between air and falling film desiccant in the presence of nanoparticle suspensions, Int. J. Energy res. 27, 725-745 (2003)
[13] Putra, N.; Roetzel, W.; Das, S. K.: Natural convection of nanofluids, Heat mass transfer 39, 775-784 (2003) · Zbl 1136.76489
[14] Xuan, Y. M.; Li, Q.: Heat transfer enhancement of nanofluids, Int. J. Heat fluid flow 21, 58-64 (2000)
[15] Xuan, Y. M.; Li, Q.: Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat transfer 125, 151-155 (2003)
[16] Pak, B. C.; Cho, Y. I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. heat transfer 11, 151-170 (1999)
[17] Yang, Y.; Zhang, Z.; Grulke, E.; Anderson, W.; Wu, G.; Heat, G.: Transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat mass transfer 48, 1107-1116 (2005)
[18] Wen, D. S.; Ding, Y. L.: Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids, J. nanopart. Res. 7, 265-274 (2005)
[19] Wang, B. X.; Zhou, L. P.; Peng, X. F.: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat mass transfer 46, 2665-2672 (2003) · Zbl 1032.76703
[20] Das, S. K.; Putra, N.; Roetzel, W.: Pool boiling characteristics of nanofluids, Int. J. Heat mass transfer 46, 851-862 (2003) · Zbl 1136.76489
[21] Das, S. K.; Putra, N.; Roetzel, W.: Pool boiling of nanofluids on horizontal narrow tubes, Int. J. Multiphase flow 29, 1237-1247 (2003) · Zbl 1136.76489
[22] Das, S. K.; Putra, N.; Thiesen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids, J. heat transfer 125, 567-574 (2003)
[23] Kim, J.; Kang, Y. T.; Choi, C. K.: Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. fluids 16, 2395-23401 (2004) · Zbl 1186.76282
[24] A.G.A. Nanna, T. Fistrovich, K. Malinski, S.U.S. Choi, Thermal transport phenomena in buoyancy-driven nanofluids, in Proceedings of 2005 ASME International Mechanical Engineering Congress and RD&D Exposition, 15 – 17 November 2004, Anaheim, California, USA.
[25] A.G.A. Nnanna, M. Routhu, Transport phenomena in buoyancy-driven nanofluids – Part II, in: Proceedings of 2005 ASME Summer Heat Transfer Conference, 17 – 22 July 2005, San Francisco, California, USA.
[26] Ding, Y.; Chen, H.; Wang, L.: Heat transfer intensification using nanofluids, J. particle powder 25, 23-36 (2007)
[27] Chang, B. H.; Mills, A. F.; Hernandez, E.: Natural convection of microparticle suspensions in thin enclosures, Int. J. Heat mass transfer 51, 1332-1341 (2008) · Zbl 1255.76003
[28] Ho, C. J.; Liu, W. K.; Chang, Y. S.; Lin, C. C.: Natural convection heat transfer of alumina – water nanofluid in vertical square enclosures: an experimental study, Int. J. Therm. sci. 49, 1345-1353 (2010)
[29] Wang, X.; Mujumdar, A.: Heat transfer characteristics of nanofluids: a review, Int. J. Therm. sci. 46, 1-19 (2007)
[30] Keblinski, P.; Phillpot, S. R.; Choi, S. U. S.; Eastman, J. A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids, Int. J. Heat mass transfer 45, 855-863 (2002) · Zbl 1017.76094
[31] Eastman, J. A.; Phillpot, S. R.; Choi, S. U. S.; Keblinski, P.: Thermal transport in nanofluids, Annu. rev. Mater. res. 34, 219-246 (2004) · Zbl 1111.76333
[32] Evans, W.; Fish, J.; Keblinski, P.: Role of Brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. phys. Lett. 88, No. 9, 93116 (2006)
[33] Yu, W.; Choi, S. U. S.: The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell model, J. nanopart. Res. 5, No. 1 – 2, 167-171 (2003)
[34] Yu, W.; Choi, S. U. S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton – crosser model, J. nanopart. Res. 6, No. 4, 355-361 (2004)
[35] Xue, Q.; Xu, W. M.: A model of thermal conductivity of nanofluids with interfacial shells, Mater. chem. Phys. 90, 298-301 (2005)
[36] Xue, Q.: Model for effective thermal conductivity of nanofluids, Phys. lett. A 307, 313-317 (2003)
[37] Xie, H.; Fujii, M.; Zhang, X.: Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle – fluid mixture, Int. J. Heat mass transfer 48, 2926-2932 (2005) · Zbl 1189.76676
[38] Xue, L.; Keblinski, P.; Phillpot, S. R.; Choi, S. U. S.; Eastman, J. A.: Effect of liquid layering at the liquid – solid interface on thermal transport, Int. J. Heat mass transfer 47, No. 19 – 20, 4277-4284 (2004) · Zbl 1111.76333
[39] S.P. Jang, S.U. Choi, Free convection in a rectangular cavity (Benard convection) with nanofluids, in: Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, November 13 – 20, 2004.
[40] Gosselin, L.; Da Silva, A. K.: Combined heat transfer and power dissipation optimization of nanofluid flows, Appl. phys. Lett. 85, 4160 (2004)
[41] Lee, J.; Mudawar, I.: Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, Int. J. Heat mass transfer 50, 452-463 (2007)
[42] Zhou, S. Q.; Ni, R.: Measurement of the specific heat capacity of water-based al2o3 nanofluid, Appl. phys. Lett. 92, 093123 (2008)
[43] Hwang, K. S.; Lee, J. H.; Jang, S. P.: Buoyancy-driven heat transfer of water-based al2o3 nanofluids in a rectangular cavity, Int. J. Heat mass transfer 50, 4003-4010 (2007) · Zbl 1125.80309
[44] Ho, C. J.; Chen, M. W.; Li, Z. W.: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat mass transfer 51, 4506-4516 (2008) · Zbl 1144.80317
[45] Einstein, A.: Eine neue bestimmung der molekuldimensionen, Ann. phys., Leipzig 19, 289-306 (1906) · JFM 37.0811.01
[46] Brinkman, H. C.: The viscosity of concentrated suspensions and solutions, J. chem. Phys. 20, 571 (1952)
[47] Batchelor, G.: The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. fluid mech. 83, 97-117 (1977)
[48] Lundgren, T.: Slow flow through stationary random beds and suspensions of spheres, J. fluid mech. 51, 273-299 (1972) · Zbl 0229.76067
[49] Graham, A. L.: On the viscosity of suspensions of solid spheres, Appl. sci. Res. 37, 275-286 (1981) · Zbl 0476.76095
[50] Simha, R. A.: Treatment of the viscosity of concentrated suspensions, J. appl. Phys. 23, 1020-1024 (1952)
[51] Mooney, M.: The viscosity of a concentrated suspension of spherical particles, J. colloid sci. 6, 162-170 (1951)
[52] Eilers, V. H.: Die viskocitat von emulsionen hochviskoser stoffe als funktion der konzentration, Kolloid-zeitschrift 97, 313-321 (1941)
[53] Saito, N.: Concentration dependence of the viscosity of high polymer solutions, J. phys. Soc. jpn. 5, 4-8 (1950)
[54] Frankel, N. A.; Acrivos, A.: On the viscosity of a concentrate suspension of solid spheres, Chem. eng. Sci. 22, 847-853 (1967)
[55] Wang, X.; Xu, X.; Choi, S. U. S.: Thermal conductivity of nanoparticles – fluid mixture, J. thermophys. Heat transfer 13, 474-480 (1999)
[56] Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-al2 O3, sio2 and tio2 ultra-fine particles), Netsu bussei 4, 227-233 (1993)
[57] Maiga, S.; Palm, S. J.; Nguyen, C. T.; Roy, G.; Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat fluid flow 26, 530-546 (2005)
[58] S. Maiga, C.T. Nguyen, N. Galanis, G. Roy, T. Mar’e, M. Coqueux, Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, in: R.W. Lewis (Ed.), Int. J. Num. Meth. Heat Fluid Flow, vol. 16, 2006, pp. 275 – 292.
[59] Namburua, P. K.; Kulkarni, D. P.; Misra, D.; Das, D. K.: Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. therm. Fluid sci. 32, 397-402 (2007)
[60] Nguyen, C. T.; Desgranges, F.; Roy, G.; Galanis, N.; Mar&acute, T.; E; Boucher, S.; Mintsa, H. A.: Temperature and particle-size dependent viscosity data for water-based nanofluids – hysteresis phenomenon, Int. J. Heat fluid flow 28, 1492-1506 (2007)
[61] Tseng, W. J.; Lin, K. C.: Rheology and colloidal structure of aqueous tio2 nanoparticle suspensions, Mater. sci. Eng. 355, 186-192 (2003)
[62] Kulkarni, D. P.; Das, D. K.; Patil, S. L.: Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture, J. nanosci. Nanotechnol. 7, 2318-2322 (2007)
[63] Kulkarni, D. P.; Das, D. K.; Chukwa, G.: Temperature dependent rheological of copper oxide nanoparticles suspension (nanofluid), J. nanosci. Nanotechnol. 6, 1150-1154 (2006)
[64] Murshed, S. M. S.; Leong, K. C.; Yang, C.: Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. sci. 47, 560-568 (2008)
[65] Anoop, K. B.; Kabelac, S.; Sundararajan, T.; Das, S. K.: Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration, J. appl. Phys. 106, 034909 (2009)
[66] Chen, H.; Ding, Y.; He, Y.; Tan, Ch.: Rheological behavior of ethylene glycol based titania nanofluids, Chem. phys. Lett. 444, 333-337 (2007)
[67] Buongiorno, J.: Convective transport in nanofluids, ASME J. Heat transfer 128, 240-250 (2006)
[68] Palm, S. J.; Roy, G.; Nguyen, C. T.: Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties, Appl. therm. Eng. 26, 2209-2218 (2006)
[69] Duangthongsuk, W.; Wongwises, S.: Measurement of temperature-dependent thermal conductivity and viscosity of tio2 – water nanofluids, Exp. therm. Fluid sci. 33, 706-714 (2009)
[70] Namburu, P. K.; Das, D. K.; Tanguturi, K. M.; Vajjha, R. S.: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Therm. sci. 48, 290-302 (2009)
[71] Namburu, P. K.; Kulkarni, D. P.; Misra, D.; Das, D. K.: Viscosity of copper oxide nanoparticles dispersed in ethyleneglycol and water mixture, Exp. therm. Fluid sci. 32, 397-402 (2007)
[72] Koo, J.; Kleinstreuer, C.: Laminar nanofluid flow in microheat-sinks, Int. J. Heat mass transfer 48, 2652-2661 (2005) · Zbl 1189.76122
[73] Hamilton, R. L.; Crosser, O. K.: Thermal conductivity of heterogeneous two-component systems, I&EC fundam. 1, 182-191 (1962)
[74] Maxwell, J. C. A.: Treatise on electricity and magnetism, (1881) · JFM 05.0556.01
[75] D.A.G. Bruggeman, Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen, Ann. Phys., Leipzig, 24 (1935) 636 – 679.
[76] Wasp, F. J.: Solid – liquid slurry pipeline transportation, (1977)
[77] Jeffrey, D. J.: Conduction through a random suspension of spheres, Proc. roy. Soc. (Lond.) 335, 355-367 (1973)
[78] Davis, R. H.: The effective thermal conductivity of a composite material with spherical inclusions, Int. J. Thermophys. 7, 609-620 (1986)
[79] Lu, S.; Lin, H.: Effective conductivity of composites containing aligned spherical inclusions of finite conductivity, J. appl. Phys. 79, 6761-6769 (1996)
[80] Xuan, Y.; Li, Q.; Hu, W.: Aggregation structure and thermal conductivity of nanofluids, Aiche J. 49, No. 4, 1038-1043 (2003)
[81] Prasher, R.; Bhattacharya, P.; Phelan, P. E.: Thermal conductivity of nanoscale colloidal solutions (nanofluids), Phys. rev. Lett. 94, No. 2, 025901 (2005)
[82] Koo, J.; Kleinstreuer, C.: A new thermal conductivity model for nanofluids, J. nanopart. Res. 6, No. 6, 577-588 (2004)
[83] Chon, C. H.; Kihm, K. D.; Lee, S. P.; Choi, S. U. S.: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. phys. Lett. 87, 153107 (2005)
[84] Lee, J.; Gharago.Zloo, P. E.; Kolade, B.; Eaton, J. K.; Goodson, K. E.: Nanofluid convection in microtubes, ASME J. Heat transfer 132, 354-360 (2010)
[85] Lee, S.; Choi, S. U. S.; Li, S.; Eastman, J. A.: Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat transfer 121, 280-289 (1999)
[86] Li, C. H.; Peterson, G. P.: The effect of particle size on the effective thermal conductivity of al2o3 – water nanofluids, J. appl. Phys. 101, 044312 (2007)
[87] Zhang, X.; Gu, H.; Fujii, M.: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, J. appl. Phys. 100, 1-5 (2006)
[88] Timofeeva, E. V.; Gavrilov, A. N.; Mccloskey, J. M.; Tolmachev, Y. V.: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phys. rev. E 76, 061203 (2007)
[89] Minsta, H. A.; Roy, G.; Nguyen, C. T.; Doucet, D.: New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. sci. 48, 363-371 (2009)
[90] Roy, G.; Nguyen, C. T.; Lajoie, P. -R.: Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlatt. microstruct. 35, 497-511 (2004)
[91] Sundar, L. S.; Sharma, K. V.: Experimental determination of thermal conductivity of fluid containing oxide nanoparticles, Int. J. Dynam. fluids 4, 57-69 (2008)
[92] Golubovic, M.; Hettiarachchi, H. D. M.; Worek, W. M.; Minkowycz, W. J.: Nanofluids and critical heat flux, experimental and analytical study, Appl. therm. Eng. 29, 1281-1288 (2009)
[93] Xue, H. S.; Fan, J. R.; Hong, R. H.; Hu, Y. C.: Characteristic boiling curve of carbon nanotube nanofluid as determined by the transient calorimeter technique, Appl. phys. Lett. 90, 184107 (2007)
[94] Kim, H. D.; Kim, J.: Experimental studies on CHF characteristics of nanofluids at pool boiling, Int. J. Multiphase flow 33, 691-706 (2007)
[95] Murshed, S. M.; Tan, S. H.; Nguyen, N. T.: Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics, J. phys. D: appl. Phys. 41, 085502 (2008)
[96] D.S. Zhu, S.Y. Wu, N. Wang, Surface tension and viscosity of aluminum oxide nanofluids, in: The 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, AIP Conference Proceedings – March 1, 2010, vol. 1207, pp. 460 – 464.
[97] Narayan, G. Prakash; Anoop, K. B.; Das, Sarit K.: Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes, J. appl. Phys. 102, 074317 (2007)
[98] You, S. M.; Kim, J. H.; Kim, K. H.: Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. phys. Lett. 83, 3374-3376 (2003)
[99] Bang, I. C.; Chang, S. H.: Boiling heat transfer performance and phenomena of al2o3 – water nanofluids from a plain surface in a pool, Int. J. Heat mass transfer 48, 2407-2419 (2005)
[100] J.P. Tu, N. Dinh, T. Theofanous, An experimental study of nanofluid boiling heat transfer, in: Proceedings of 6th International Symposium on Heat Transfer, Beijing, China, 2004.
[101] Wen, D. S.; Ding, Y. L.: Experimental investigation into the pool boiling heat transfer of aqueous based (-alumina nanofluids, J. nanopart. Res. 7, 265-274 (2005)
[102] Wen, D. S.; Ding, Y. L.; Williams, R. A.: Pool boiling heat transfer of aqueous based tio2 nanofluids, J. enhanced heat transfer 13, 231-244 (2006)
[103] Liu, Z. H.; Xiong, J. G.; Bao, R.: Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface, Int. J. Multiphase flow 33, 1284-1295 (2007)
[104] Kim, M. H.; Kim, J. B.; Kim, H. D.: Experimental studies on CHF characteristics of nano-fluids at pool boiling, Int. J. Multiphase flow 33, 691-706 (2007)
[105] Kim, S. J.; Mckrell, T.; Buongiorno, J.; Hu, L. W.: Experimental study of flow critical heat flux in alumina – water, zinc-oxide – water and diamond – water nanofluids, J. heat transfer 131, No. 4 (2009)
[106] Vassallo, P.; Kumar, R.; Amico, S. D.: Pool boiling heat transfer experiments in silica – water nanofluids, Int. J. Heat mass transfer 47, 407-411 (2004)
[107] C.H. Li, B.X. Wang, X.F. Peng, Experimental investigations on boiling of nano-particle suspensions, in: 2003 Boiling Heat Transfer Conference, Jamica, USA.
[108] Kim, S. J.; Bang, I. C.; Buongiorno, J.; Hu, L. W.: Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Appl. phys. Lett. 89, 153107 (2006)
[109] Kim, S. J.; Bang, I. C.; Buongiorno, J.; Hu, L. W.: Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, Int. J. Heat mass transfer 50, 4105-4116 (2007)
[110] Sefiane, K.: On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids, Appl. phys. Lett. 89, 044106 (2006)
[111] Hegde, R.; Rao, S. S.; Reddy, R. P.: Critical heat flux enhancement in pool boiling using alumina nanofluids, Heat transfer, heat transfer — asian res. 39, 323-331 (2010)
[112] Anderson, T. M.; Mudawar, I.: Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid, ASME J. Heat transfer 111, 752-759 (1989)
[113] Mudawar, I.; Anderson, T. M.: Optimization of enhanced surfaces for high flux chip cooling by pool boiling, ASME J. Electron. packag. 115, 89-99 (1993)
[114] Honda, H.; Takamastu, H.; Wei, J. J.: Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness, ASME J. Heat transfer 124, 383-389 (2002)
[115] Wei, J. J.; Honda, H.; Guo, L. J.: Experimental study of boiling phenomena and heat transfer performances of FC-72 over micro-pin-finned silicon chips, Heat mass transfer 41, 744-755 (2005)
[116] Ujereh, S.; Fisher, T.; Mudawar, I.: Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat mass transfer 50, 4023-4038 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.