×

zbMATH — the first resource for mathematics

Isogeometric analysis using T-splines. (English) Zbl 1227.74123
Summary: We explore T-splines, a generalization of NURBS enabling local refinement, as a basis for isogeometric analysis. We review T-splines as a surface design methodology and then develop it for engineering analysis applications. We test T-splines on some elementary two-dimensional and three-dimensional fluid and structural analysis problems and attain good results in all cases. We summarize the current status of T-splines, their limitations, and future possibilities.

MSC:
74S99 Numerical and other methods in solid mechanics
76M99 Basic methods in fluid mechanics
65D17 Computer-aided design (modeling of curves and surfaces)
65D07 Numerical computation using splines
Software:
ISOGAT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Workshop on mathematical foundations of computer aided design, (1999), Mathematical Sciences Research Institute Berkeley, CA, June
[2] Akkerman, I.; Bazilevs, Y.; Calo, V.; Hughes, T.J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. mech., 41, 371-378, (2008) · Zbl 1162.76355
[3] Auricchio, F.; da Veiga, L.B.; Buffa, A.; Lovadina, C.; Reali, A.; Sangalli, G., A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. methods appl. mech. engrg., 197, 160-172, (2007) · Zbl 1169.74643
[4] Bazilevs, Y.; Beirao de Veiga, L.; Cottrell, J.A.; Hughes, T.J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. models methods appl. sci., 16, 1031-1090, (2006) · Zbl 1103.65113
[5] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. methods appl. mech. engrg., 197, 173-201, (2007) · Zbl 1169.76352
[6] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid – structure interaction: theory, algorithms, and computations, Comput. mech., 43, 3-37, (2008) · Zbl 1169.74015
[7] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid – structure interaction analysis with applications to arterial blood flow, Comput. mech., 38, 310-322, (2006) · Zbl 1161.74020
[8] Bazilevs, Y.; Hughes, T.J.R., NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput. mech., 43, 143-150, (2008) · Zbl 1171.76043
[9] Y. Bazilevs, C. Michler, V.M. Calo, T.J.R. Hughes, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., doi:10.1016/j.cma.2008.11.020. · Zbl 1406.76023
[10] Belytschko, T.; Stolarski, H.; Liu, W.K.; Carpenter, N.; Ong, J.S.-J., Stress projection for membrane and shear locking in shell finite elements, Comput. methods appl. mech. engrg., 51, 221-258, (1985) · Zbl 0581.73091
[11] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[12] S.B. Brunnermeier, S.A. Martin, Interoperability cost analysis of the US automotive supply chain, National Institute of Standards and Technology, NIST Planning Report 99-1, 1999.
[13] Calo, V.M.; Brasher, N.F.; Bazilevs, Y.; Hughes, T.J.R., Multiphysics model for blood flow and drug transport with applications to patient-specific coronary artery flow, Comput. mech., 43, 161-177, (2008) · Zbl 1169.76066
[14] Catmull, E.; Clark, J., Recursively generated B-spline surfaces on arbitrary topological meshes, Comput. aided des., 10, 350-355, (1978)
[15] Cirak, F.; Ortiz, M., Fully \(C^1\)-conforming subdivision elements for finite deformation thin shell analysis, Int. J. numer. methods engrg., 51, 813-833, (2001) · Zbl 1039.74045
[16] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin shell analysis, Int. J. numer. methods engrg., 47, 2039-2072, (2000) · Zbl 0983.74063
[17] Cirak, F.; Scott, M.J.; Antonsson, E.K.; Ortiz, M.; Schröder, P., Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput. aided des., 34, 137-148, (2002)
[18] Cottrell, J.A.; Hughes, T.J.R.; Reali, A., Studies of refinement and continuity in isogeometric analysis, Comput. methods appl. mech. engrg., 196, 4160-4183, (2007) · Zbl 1173.74407
[19] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. methods appl. mech. engrg., 195, 5257-5296, (2006) · Zbl 1119.74024
[20] M. Dorfel, B. Juttler, B. Simeon, Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., this issue. · Zbl 1227.74125
[21] Elguedj, T.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R., \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. methods appl. mech. engrg., 197, 2732-2762, (2008) · Zbl 1194.74518
[22] Evans, J.A.; Bazilevs, Y.; Babuška, I.; Hughes, T.J.R., N-widths, sup – infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. methods appl. mech. engrg., 198, 1726-1741, (2009) · Zbl 1227.65093
[23] Farin, G.E., Curves and surfaces for CAGD, A practical guide, (1999), Morgan Kaufman Publishers San Francisco
[24] Farin, G.E., NURBS curves and surfaces: from projective geometry to practical use, (1999), A.K. Peters, Ltd. Natick, MA · Zbl 0928.68115
[25] C.A. Felippa, Course notes for advanced finite element methods. <http://caswww.colorado.edu/Felippa.d/FelippaHome.d/Home.html>.
[26] T. Finnigan, Arbitrary degree T-splines, Master’s thesis, Department of Computer Science, Brigham Young University, 2008.
[27] Gomez, H.; Calo, V.M.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of the cahn – hilliard phase-field model, Comput. methods appl. mech. engrg., 197, 4333-4352, (2008) · Zbl 1194.74524
[28] Hoschek, J.; Lasser, D., Fundamentals of computer aided geometric design, (1993), A.K. Peters Wellesley, Massachusetts · Zbl 0788.68002
[29] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications Mineola, NY
[30] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. methods appl. mech. engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[31] Hughes, T.J.R.; Franca, L.P., A mixed finite element formulation for reissner – mindlin plate theory: uniform convergence of all higher order spaces, Comput. methods appl. mech. engrg., 67, 223-240, (1988) · Zbl 0611.73077
[32] Hughes, T.J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. methods appl. mech. engrg., 197, 4104-4124, (2008) · Zbl 1194.74114
[33] T.J.R. Hughes, A. Realli, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., this issue. · Zbl 1227.65029
[34] Kasik, D.J.; Buxton, W.; Ferguson, D.R., Ten CAD model challenges, IEEE comput. graph. appl., 25, 2, (2005)
[35] X. Li, X. Guo, H. Wang, Y. He, X. Gu, H. Qin, Harmonic volumetric mapping for solid modeling applications, in: Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, Beijing China, 2007.
[36] Lorentz, G.G., Bernstein polynomials, (1986), Chelsea Publishing Co. New York · Zbl 0989.41504
[37] Piegl, L.; Tiller, W., The NURBS book (monographs in visual communication), (1997), Springer-Verlag New York
[38] Prautzsch, H.; Boehm, W.; Paluszny, M., Bézier and B-spline techniques, (2002), Springer New York, NY · Zbl 1033.65008
[39] Rank, E.; Düster, A.; Nübel, V.; Preusch, K.; Bruhns, O.T., High order finite elements for shells, Comput. methods appl. mech. engrg., 194, 21-24, 2494-2512, (2005) · Zbl 1082.74056
[40] Rogers, D.F., An introduction to NURBS with historical perspective, (2001), Academic Press San Diego, CA
[41] Sederberg, T.W.; Anderson, D.C.; Goldman, R.N., Implicit representation of parametric curves and surfaces, Comput. vis. graph. image process., 28, 72-84, (1984) · Zbl 0601.65008
[42] Sederberg, T.W.; Cardon, D.L.; Finnigan, G.T.; North, N.S.; Zheng, J.; Lyche, T., T-spline simplification and local refinement, ACM trans. graph., 23, 3, 276-283, (2004)
[43] Sederberg, T.W.; Finnigan, G.T.; Li, X.; Lin, H., Watertight trimmed NURBS, ACM trans. graph., 27, 3, (2008), Article No. 79
[44] Sederberg, T.W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-nurccss, ACM trans. graph., 22, 3, 477-484, (2003)
[45] T-Splines, Inc. <http://www.tsplines.com/maya/>.
[46] T-Splines, Inc. <http://www.tsplines.com/rhino/>.
[47] Thurston, W.P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. am. math. soc. (new series), 6, 357-381, (1982) · Zbl 0496.57005
[48] Thurston, W.P., Three-dimensional geometry and topology, vol. 1, (1997), Princeton University Press
[49] Wall, W.A.; Frenzel, M.A.; Cyron, C., Isogeometric structural shape optimization, Comput. methods appl. mech. engrg., 197, 2976-2988, (2008) · Zbl 1194.74263
[50] Wang, H.; He, Y.; Li, X.; Gu, X.; Qin, H., Polycube splines, Comput. aided des., 40, 721-733, (2008) · Zbl 1206.65038
[51] Warren, J.; Weimer, H., Subdivision methods for geometric design, (2002), Morgan Kaufman Publishers San Francisco
[52] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C.; Hughes, T.J.R., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. methods appl. mech. engrg., 196, 2943-2959, (2007) · Zbl 1121.76076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.