×

zbMATH — the first resource for mathematics

Isogeometric shell analysis: the Reissner-Mindlin shell. (English) Zbl 1227.74107
Summary: A Reissner-Mindlin shell formulation based on a degenerated solid is implemented for NURBS-based isogeometric analysis. The performance of the approach is examined on a set of linear elastic and nonlinear elasto-plastic benchmark examples. The analyses were performed with LS-DYNA, an industrial, general-purpose finite element code, for which a user-defined shell element capability was implemented. This new feature, to be reported on in subsequent work, allows for the use of NURBS and other non-standard discretizations in a sophisticated nonlinear analysis framework.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
Software:
LS-DYNA; ISOGAT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akkerman, I.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. mech., 41, 371-378, (2008) · Zbl 1162.76355
[2] Bazilevs, Y.; Calo, V.M.; Cottrel, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. meth. appl. mech. engrg., 197, 173-201, (2007) · Zbl 1169.76352
[3] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Evans, J.A.; Hughes, T.J.R.; Lipton, S.; Scott, M.A.; Sederberg, T.W., Isogeometric analysis using T-splines. comput. meth. appl. mech. engrg., 199, 229-263, (2010) · Zbl 1227.74123
[4] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid – structure interaction: theory algorithms and computations, Comput. mech., 43, 3-37, (2008) · Zbl 1169.74015
[5] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid – structure interaction analysis with applications to arterial blood flow, Comput. mech., 38, 310-322, (2006) · Zbl 1161.74020
[6] Bazilevs, Y.; Hughes, T.J.R., NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput. mech., 43, 143-150, (2008) · Zbl 1171.76043
[7] T. Belytschko, Personal Communication, 2008.
[8] Belytschko, T.; Lin, J.I.; Tsay, C.S., Explicit algorithms for the nonlinear dynamics of shells, Comput. meth. appl. mech. engrg., 42, 225-251, (1984) · Zbl 0512.73073
[9] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2001), Wiley West Sussex, England
[10] Belytschko, T.; Stolarski, H.; Liu, W.K.; Carpenter, N.; Ong, J.S.-J., Stress projection for membrane and shear locking in shell finite elements, Comput. meth. appl. mech. engrg., 51, 221-258, (1985) · Zbl 0581.73091
[11] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. meth. appl. mech. engrg., 99, 2356-2394, (1992) · Zbl 0763.73052
[12] Benson, D.J., Stable time step estimation for multi-material Eulerian hydrocodes, Comput. meth. appl. mech. engrg., 167, 191-205, (1998) · Zbl 0945.74064
[13] Benson, D.J.; Hallquist, J.O., A single surface contact algorithm for the postbuckling analysis of shell structures, Comput. meth. appl. mech. engrg., 78, 141-163, (1990) · Zbl 0708.73079
[14] Bischoff, M.; Wall, W.A.; Bletzinger, K.-U.; Ramm, E., Models and finite elements for thin-walled structures, (), (Chapter 3)
[15] Cirak, F.; Ortiz, M., Fully C1-conforming subdivision elements for finite deformation thin shell analysis, Int. J. numer. meth. engrg., 51, 813-833, (2001) · Zbl 1039.74045
[16] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin shell analysis, Int. J. numer. meth. engrg., 47, 2039-2072, (2000) · Zbl 0983.74063
[17] Cirak, F.; Scott, M.J.; Antonsson, E.K.; Ortiz, M.; Schröder, P., Integrated modeling finite-element analysis and engineering design for thin-shell structures using subdivision, Comput. aided des., 34, 137-148, (2002)
[18] Cohen, E.; Riesenfeld, R.F.; Elber, G., Geometric modeling with splines: an introduction, (2001), A K Peters Natick, MA · Zbl 0980.65016
[19] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. meth. appl. mech. engrg., 195, 5257-5297, (2006) · Zbl 1119.74024
[20] Dörfel, M.R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. meth. appl. mech. engrg., 199, 264-275, (2010) · Zbl 1227.74125
[21] Elguedj, T.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R., \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. meth. appl. mech. engrg., 197, 33-40, (2008) · Zbl 1194.74518
[22] Flanagan, D.P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. numer. meth. engrg., 17, 679-706, (1981) · Zbl 0478.73049
[23] Gresho, P.M.; Sani, R.L., Incompressible flow and the finite element method, (1998), Wiley New York, NY · Zbl 0941.76002
[24] J.O. Hallquist, LS-DYNA theoretical manual, Technical Report, Livermore Software Technology Corporation, 1998.
[25] Höllig, K., Finite element methods with B-splines, (2003), SIAM Philadelpia · Zbl 1020.65085
[26] Hughes, T.J.R., The finite element method linear static and dynamic finite element analysis, (2000), Dover
[27] Hughes, T.J.R.; Liu, W.K., Nonlinear finite element analysis of shells: part I three-dimensional shells, Comput. meth. appl. mech. engrg., 26, 331-362, (1981) · Zbl 0461.73061
[28] Hughes, T.J.R.; Pister, K.S.; Taylor, R.L., Implicit – explicit finite elements in nonlinear transient analysis, Comput. meth. appl. mech. engrg., 17/18, 159-182, (1979) · Zbl 0413.73074
[29] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD finite elements NURBS exact geometry and mesh refinement, Comput. meth. appl. mech. engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[30] Hughes, T.J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. meth. appl. mech. engrg., 197, 4104-4124, (2008) · Zbl 1194.74114
[31] B.M. Irons, Applications of a theorem on eigenvalues to finite element problems, Technical Report CR/132/70, University of Wales, Department of Civil Engineering, Swansea, UK, 1970.
[32] S. Kyriakides, Personal Communication, 2008.
[33] Lipton, S.; Evans, J.A.; Bazilevs, Y.; Elguedj, T.; Hughes, T.J.R., Robustness of isogeometric structural discretizations under severe mesh distortion. comput. meth. appl. mech. engrg., 199, 357-373, (2010) · Zbl 1227.74112
[34] Morino, L.; Leech, J.W.; Wittmer, E.A., An improved numerical calculation technique for large elastic – plastic transient deformations of thin shells: part 2 - evaluation and applications, J. appl. mech., 429-435, (1971)
[35] Piegl, L.; Tiller, W., The NURBS book (monographs in visual communication), (1997), Springer-Verlag New York
[36] Rogers, D.F., An introduction to NURBS with historical perspective, (2001), Academic Press San Diego, CA
[37] Schoenfeld, S.; Benson, D.J., Quickly convergent integration methods for plane stress plasticity, Commun. appl. numer. meth., 9, 293-305, (1993) · Zbl 0777.73071
[38] Sederberg, T.W.; Finnigan, G.T.; Li, X.; Lin, H.; Ipson, H., Watertight trimmed NURBS, ACM trans. graph., 27, 3, (2008)
[39] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (2000), Springer New York · Zbl 0934.74003
[40] Wall, W.A.; Frenzel, M.A.; Cyron, C., Isogeometric structural shape optimization, Comput. meth. appl. mech. engrg., 197, 2976-2988, (2008) · Zbl 1194.74263
[41] Wang, H.; He, Y.; Li, X.; Gu, X.; Qin, H., Polycube splines, Comput. aided des., 40, 721-733, (2008) · Zbl 1206.65038
[42] Wilkinson, J.H., The algebraic eigenvalue problem, (1965), Oxford University Press · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.