×

zbMATH — the first resource for mathematics

An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. (English) Zbl 1227.74083
Summary: An edge-based smoothed finite element method (ES-FEM) for static, free vibration and buckling analyses of Reissner-Mindlin plates using 3-node triangular elements is studied in this paper. The calculation of the system stiffness matrix is performed by using the strain smoothing technique over the smoothing domains associated with edges of elements. In order to avoid the transverse shear locking and to improve the accuracy of the present formulation, the ES-FEM is incorporated with the discrete shear gap (DSG) method together with a stabilization technique to give a so-called edge-based smoothed stabilized discrete shear gap method (ES-DSG). The numerical examples demonstrated that the present ES-DSG method is free of shear locking and achieves the high accuracy compared to the exact solutions and others existing elements in the literature.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
Software:
XFEM
PDF BibTeX Cite
Full Text: DOI
References:
[1] Mackerle, J., Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1992-1995), Engrg. comput., 14, 4, 347-440, (1997) · Zbl 0983.74500
[2] Mackerle, J., Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1999-2002), Engrg. comput., 19, 5, 520-594, (2002) · Zbl 1021.74001
[3] A.W. Leissa, Vibration of Plates, NASA, SP-160, Washington DC, 1969. · Zbl 0181.52603
[4] Leissa, A.W., Plate vibration research: 1981-1985: classical theory, Shock vib. dig., 19, 11-18, (1987)
[5] Leissa, [22] A.W., A review of laminated composite plate buckling, Appl. mech. rev., 40, 5, 575-591, (1987)
[6] Leissa, A.W., Buckling and postbuckling theory for laminated composite plates, (), 1-29
[7] Liew, K.M.; Xiang, Y.; Kitipornchai, S., Research on thick plate vibration: a literature survey, J. sound vib., 180, 1, 163-176, (1995) · Zbl 1237.74002
[8] Liew, K.M.; Wang, J.; Ng, T.Y.; Tan, M.J., Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method, J. sound vib., 276, 997-1017, (2004)
[9] Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M., Reduced integration technique in general analysis of plates and shells simple and efficient element for plate bending, Int. J. numer. methods engrg., 3, 275-290, (1971) · Zbl 0253.73048
[10] R Hughes, T.J.; Taylor, R.L.; Kanoknukulchai, W., Simple and efficient element for plate bending, Int. J. numer. methods engrg., 11, 1529-1543, (1977) · Zbl 0363.73067
[11] Hughes, T.J.R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in finite element method of plates, Nucl. engrg. des., 46, 203-222, (1978)
[12] Malkus, D.S.; Hughes, T.J.R., Mixed finite element methods-reduced and selective integration techniques: a unification of concepts, Comput. methods appl. mech. engrg., 46, 203-222, (1978)
[13] Lee, S.W.; H Pian, T.H., Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, Aiaa j., 16, 29-34, (1978)
[14] Lee, S.W.; Wong, C., Mixed formulation finite elements for Mindlin theory plate bending, Int. J. numer. methods engrg., 18, 1297-1311, (1982) · Zbl 0486.73069
[15] Zienkiewicz, O.C.; Lefebvre, D., A robust triangular plate bending element of the reissner – mindlin type, Int. J. numer. methods engrg., 26, 1169-1184, (1988) · Zbl 0634.73064
[16] Zienkiewicz, O.C.; Xu, Z.; Zeng, L.F.; Samuelsson, A.; Wiberg, N.E., Linked interpolation for reissner – mindlin plate element: part I - a simple quadrilateral, Int. J. numer. methods engrg., 36, 3043-3056, (1993) · Zbl 0780.73090
[17] Ayad, R.; Dhatt, G.; Batoz, J.L., A new hybrid-mixed variational approach for reissner – mindlin plate, the misp model, Int. J. numer. methods engrg., 42, 1149-1179, (1998) · Zbl 0912.73051
[18] Lovadina, C., Analysis of a mixed finite element method for the reissner – mindlin plate problems, Comput. methods appl. mech. engrg., 163, 71-85, (1998) · Zbl 0962.74065
[19] Taylor, R.L.; Auricchio, F., Linked interpolation for reissner – mindlin plate element: part II - a simple triangle, Int. J. numer. methods engrg., 36, 3043-3056, (1993) · Zbl 0780.73090
[20] Auricchio, F.; Taylor, R.L., A shear deformable plate element with an exact thin limit, Comput. methods appl. mech. engrg., 118, 393-412, (1994) · Zbl 0849.73063
[21] Auricchio, F.; Taylor, R.L., A triangular thick plate finite element with an exact thin limit, Finite elem. anal. des., 19, 57-68, (1995) · Zbl 0875.73290
[22] De Miranda, S.; Ubertini, F., A simple hybrid stress element for shear deformable plates, Int. J. numer. methods engrg., 65, 808-833, (2006) · Zbl 1113.74066
[23] Brasile, S., An isostatic assumed stress triangular element for the reissner – mindlin plate-bending problem, Int. J. numer. methods engrg., 74, 971-995, (2008) · Zbl 1158.74480
[24] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[25] Simo, J.C.; Fox, D.D.; Rifai, M.S., On a stress resultant geometrically exact shell model. part II: the linear theory, computational aspects, Comput. methods appl. mech. engrg., 73, 53-92, (1989) · Zbl 0724.73138
[26] César de Sá, J.M.A.; Natal Jorge, R.M., New enhanced strain elements for incompatible problems, Int. J. numer. methods engrg., 44, 229-248, (1999) · Zbl 0937.74062
[27] César de Sá, J.M.A.; Natal Jorge, R.M.; Fontes Valente, R.A.; Areias, P.M.A., Development of shear locking-free shell elements using an enhanced assumed strain formulation, Int. J. numer. methods engrg., 53, 1721-1750, (2002) · Zbl 1114.74484
[28] Cardoso, R.P.R.; Yoon, J.W.; Mahardika, M.; Choudhry, S.; Alves de Sousa, R.J.; Fontes Valente, R.A., Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements, Int. J. numer. methods engrg., 75, 156-187, (2008) · Zbl 1195.74165
[29] R Hughes, T.J.; Tezduyar, T., Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, J. appl. mech., 48, 587-596, (1981) · Zbl 0459.73069
[30] Tessler, A.; Hughes, T.J.R., A three-node Mindlin plate element with improved transverse shear, Comput. methods appl. mech. engrg., 50, 71-101, (1985) · Zbl 0562.73069
[31] T.J.R. Hughes, R.L. Taylor, The linear triangular plate bending element, in: J.R. Whiteman (Ed.), The Mathematics of Finite Elements and Applications IV. MAFELAP 1981, Academic Press, 1982, pp. 127-142.
[32] MacNeal, R.H., Derivation of element stiffness matrices by assumed strain distribution, Nucl. engrg. des., 70, 3-12, (1982)
[33] Bathe, K.J.; Dvorkin, E.N., A four-node plate bending element based on Mindlin/reissener plate theory and a mixed interpolation, Int. J. numer. methods engrg., 21, 367-383, (1985) · Zbl 0551.73072
[34] Dvorkin, E.N.; Bathe, K.J., A continuum mechanics based four-node shell element for general nonlinear analysis, Engrg. comput., 1, 77-88, (1984)
[35] Bathe, K.J.; Dvorkin, E.N., A formulation of general shell elements, the use of mixed interpolation of tensorial components, Int. J. numer. methods engrg., 22, 697-722, (1986) · Zbl 0585.73123
[36] Batoz, J.L.; Lardeur, P., A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates, Int. J. numer. methods engrg., 29, 533-560, (1989) · Zbl 0675.73042
[37] Zienkiewicz, O.C.; Taylor, R.L.; Papadopoulos, P.; O˜nate, E., Plate bending elements with discrete constraints: new triangular elements, Comput. struct., 35, 505-522, (1990) · Zbl 0729.73227
[38] Batoz, J.L.; Katili, I., On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constraints, Int. J. numer. methods engrg., 35, 1603-1632, (1992) · Zbl 0775.73236
[39] Bletzinger, K.U.; Bischoff, M.; Ramm, E., A unified approach for shear-locking free triangular and rectangular shell finite elements, Comput. struct., 75, 321-334, (2000)
[40] Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. numer. methods engrg., 50, 435-466, (2001) · Zbl 1011.74081
[41] Liu, G.R.; Dai, K.Y.; Nguyen, T.T., A smoothed finite element for mechanics problems, Comput. mech., 39, 859-877, (2007) · Zbl 1169.74047
[42] Liu, G.R.; Nguyen, T.T.; Dai, K.Y.; Lam, K.Y., Theoretical aspects of the smoothed finite element method (SFEM), Int. J. numer. methods engrg., 71, 902-930, (2007) · Zbl 1194.74432
[43] Nguyen-Thoi, T.; Liu, G.R.; Dai, K.Y.; Lam, K.Y., Selective smoothed finite element method, Tsinghua sci. technol., 12, 5, 497-508, (2007)
[44] Dai, K.Y.; Liu, G.R.; Nguyen-Thoi, T., An n-sided polygonal smoothed finite element method (nsfem) for solid mechanics, Finite elem. anal des., 43, 847-860, (2007)
[45] Dai, K.Y.; Liu, G.R., Free and forced vibration analysis using the smoothed finite element method (SFEM), J. sound. vib., 301, 803-820, (2007)
[46] Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhao, X.; Nguyen-Thoi, T.; Sun, G.Y., A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells, CMES-comput. model. engrg. sci., 28, 2, 109-125, (2008) · Zbl 1232.74099
[47] Nguyen-Xuan, H.; Bordas, S.; Nguyen-Dang, H., Smooth finite element methods: convergence, accuracy and properties, Int. J. numer. methods engrg., 74, 175-208, (2008) · Zbl 1159.74435
[48] Nguyen-Xuan, H.; Bordas, S.; Nguyen-Dang, H., Addressing volumetric locking and instabilities by selective integration in smoothed finite elements, Commun. numer. methods engrg., 25, 19-34, (2009) · Zbl 1169.74044
[49] Liu, G.R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Dai, K.Y.; Lam, K.Y., On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (letter to editor), Int. J. numer. methods engrg., 77, 1863-1869, (2009) · Zbl 1181.74137
[50] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J.F., A smoothed finite element method for plate analysis, Comput. methods appl. mech. engrg., 197, 1184-1203, (2008) · Zbl 1159.74434
[51] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., A smoothed finite element method for shell analysis, Comput. methods appl. mech. engrg., 198, 165-177, (2008) · Zbl 1194.74453
[52] Nguyen-Xuan, H.; Nguyen-Thoi, T., A stabilized smoothed finite element method for free vibration analysis of mindlin – reissner plates, Commun. numer. methods engrg., 25, 8, 882-906, (2009) · Zbl 1172.74047
[53] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 1, 131-150, (1999) · Zbl 0955.74066
[54] Belytschko, T.; Moes, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int. J. numer. methods engrg., 50, 993-1013, (2001) · Zbl 0981.74062
[55] Bordas, S.; Nguyen, P.V.; Dunant, C.; Guidoum, A.; Nguyen-Dang, H., An extended finite element library, Int. J. numer. methods engrg., 71, 6, 703-732, (2007) · Zbl 1194.74367
[56] S. Bordas, T. Rabczuk, H. Nguyen-Xuan, P. Nguyen Vinh, S. Natarajan, T. Bog, Q. Do Minh, H. Nguyen Vinh, Strain smoothing in FEM and XFEM, Comput. Struct. in press, doi:10.1016/j.compstruc.2008.07.006.
[57] Liu, G.R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam KY, K.Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. struct., 87, 14-26, (2009)
[58] Nguyen-Thoi, T.; Liu, G.R.; Nguyen-Xuan, H.; Nguyen Tran, C., Adaptive analysis using the node-based smoothed finite element method (NS-FEM), Commun. numer. methods engrg., (2009) · Zbl 1267.74115
[59] Liu, G.R.; Nguyen-Thoi, T.; Lam, K.Y., A novel alpha finite element method (α FEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Comput. methods appl. mech. engrg., 197, 3883-3897, (2008) · Zbl 1194.74433
[60] Liu, G.R.; Nguyen-Thoi, T.; Lam, K.Y., An edge-based smoothed finite element method (ES-FEM) for static and dynamic problems of solid mechanics, J. sound. vib., 320, 1100-1130, (2008)
[61] Nguyen-Xuan, H.; Liu, G.R.; Nguyen-Thoi, T.; Nguyen Tran, C., An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures, Smart mater. struct., 18, 6, 065015, (2009), (12 pp.)
[62] Nguyen-Thoi, T.; Liu, G.R.; Vu-Do, H.C.; Nguyen-Xuan, H., An edge-based smoothed finite element method (ES-FEM) for elastoviscoplastic analyses in solid mechanics using triangular mesh, Comput. mech., 45, 23-44, (2009) · Zbl 1398.74382
[63] Nguyen-Thoi, T.; Liu, G.R.; Lam, K.Y.; Zhang, G.Y., A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements, Int. J. numer. methods engrg., 78, 324-353, (2009) · Zbl 1183.74299
[64] M, Lyly; R, Stenberg; T, Vihinen, A stable bilinear element for the reissner – mindlin plate model, Comput. methods appl. mech. engrg., 110, 343-357, (1993) · Zbl 0846.73065
[65] Bischoff, M.; Bletzinger, K.U., Stabilized DSG plate and shell elements, trends in computational structural mechanics, (2001), CIMNE Barcelona, Spain
[66] Morley, L.S.D., Skew plates and structures, (1963), Pergamon Press Oxford · Zbl 0124.17704
[67] Cen, S.; Long, Y.Q.; Yao, Z.H.; Chiew, S.P., Application of the quadrilateral area co-ordinate method: a new element for mindlin – reissner plate, Int. J. numer. methods engrg., 66, 1-45, (2006) · Zbl 1110.74845
[68] Abbassian, F.; Dawswell, D.J.; Knowles, N.C., Free vibration benchmarkssoftback, (1987), Atkins Engineering Sciences Glasgow, 40 p.
[69] Robert, D.B., Formulas for natural frequency and mode shape, (1979), Van Nostrand Reinhold New York
[70] Karunasena, W.; Liew, K.M.; Al-Bermani, F.G.A., Natural frequencies of thick arbitrary quadrilateral plates using the pb-2 Ritz method, J. sound vib., 196, 371-385, (1996)
[71] Irie, T.; Yamada, G.; Aomura, S., Natural frequencies of Mindlin circular plates, J. appl. mech., 47, 652-655, (1980) · Zbl 0441.73067
[72] Lee, S.J., Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain, J. sound. vib., 278, 657-684, (2004)
[73] Lee, S.J.; Han, S.E., Free-vibration analysis of plates and shells with a nine-node assumed natural degenerated shell element, J. sound vib., 241, 605-633, (2001)
[74] McGee, O.G.; Leissa, A.W.; Huang, C.S., Vibrations of cantilevered skewed trapezoidal and triangular plates with corner stress singularities, Int. J. mech. sci., 34, 63-84, (1992)
[75] Karunasena, W.; Kitipornchai, S.; Al-bermani, F.G.A., Free vibration of cantilevered arbitrary triangular Mindlin plates, Int. J. mech. sci., 38, 431-442, (1996) · Zbl 0841.73034
[76] Gustafson, P.N.; Stokey, W.F.; Zorowski, C.F., An experimental study of natural vibrations of cantilevered triangular plate, J. aeronautic. sci., 20, 331-337, (1953)
[77] McGee, O.G.; Butalia, T.S., Natural vibrations of shear deformable cantilevered skewed trapezoidal and triangular thick plates, Comput. struct., 45, 1033-1059, (1992)
[78] Timoshenko, S.P.; Gere, J.M., Theory of elastic stability, (1970), McGraw-Hill New York
[79] Liew, K.M.; Chen, X.L., Buckling of rectangular Mindlin plates subjected to partial in-plane edge loads using the radial point interpolation method, Int. J. solids struct., 41, 1677-1695, (2004) · Zbl 1075.74533
[80] Kitipornchai, S.; Xiang, Y.; Wang, C.M.; Liew, K.M., Buckling of thick skew plates, Int. J. numer. methods engrg., 36, 1299-1310, (1993) · Zbl 0772.73042
[81] Azhari, M.; Hoshdar, S.; Bradford, M.A., On the use of bubble functions in the local buckling analysis of plate structures by the spline finite strip method, Int. J. numer. methods engrg., 48, 583-593, (2000) · Zbl 0989.74076
[82] Tham, L.G.; Szeto, H.Y., Buckling analysis of arbitrary shaped plates by spline finite strip method, Comput. struct., 36, 729-735, (1990)
[83] Vrcelj, Z.; Bradford, M.A., A simple method for the inclusion of external and internal supports in the spline finite strip method (SFSM) of buckling analysis, Comput. struct., 86, 529-544, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.